首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small cytoplasmic poly(A) + RNA homologous to a highly repeated sequence B2 of the mouse genome (scB2 RNA) was not found as free RNA within a cell. This RNA is bound to small (12-18S) ribonucleoprotein particles as well as to heavy RNP particles, apparently informosomes. After deproteinization of the heavy RNP the major part of scB2 RNA molecules cosedimented with heavy RNAs. It seems that scB2 RNA is associated with mRNA in informosomes via short complementary regions. About half of the scB2 RNA molecules was revealed in the cytoskeleton fraction. The possibility that scB2 RNAs are involved in mRNA transport or in the regulation of mRNA translation is discussed.  相似文献   

2.
The cytoplasmic poly(A)+RNAs containing ubiquitous B1 and B2 repeats of the mouse genome in normal tissues and tumors have been studied. Only one strand of the repeats is represented in cytoplasmic RNA in all the cases. Some tumor cells were found to be enriched in 1.4 kb B1+mRNA, 1.6 kb B2+mRNA and small (0.2-04 kb) B1+ and B2+ poly(A)+RNAs. On the other hand, mouse liver and kidney contained high amounts of 2 kb B2+mRNA. Its content increased noticeably in the regenerating liver, but in hepatoma it dropped to a zero level. Thus, the switching on (or off) of B1- and B2-containing mRNAs occurred noncoordinately. At the same time, the activation of the synthesis of small B2+RNA and small B1+RNA was simultaneous.  相似文献   

3.
4.
5.
6.
7.
8.
Poly(A)-containing RNAs from cytoplasm and nuclei of adult Xenopus liver cells are compared. After denaturation of the RNA by dimethysulfoxide the average molecule of nuclear poly(A)-containing RNA has a sedimentation value of 28 S whereas the cytoplasmic poly(A)-containing RNA sediments slightly ahead of 18 S. To compare the complexity of cytoplasmic and nuclear poly(A)-containing RNA, complementary DNA (cDNA) transcribed on either cytoplasmic or nuclear RNA is hybridized to the RNA used as a template. The hybridization kinetics suggest a higher complexity of the nuclear RNA compared to the cytoplasmic fraction. Direct evidence of a higher complexity of nuclear poly(A)-containing RNA is shown by the fact that 30% of the nuclear cDNA fails to hybridize with cytoplasmic poly(A)-containing RNA. An attempt to isolate a specific probe for this nucleus-restricted poly(A)-containing RNA reveals that more than 10(4) different nuclear RNA sequences adjacent to the poly(A) do not get into the cytoplasm. We conclude that a poly(A) on a nuclear RNA does not ensure the transport of the adjacent sequence to the cytoplasm.  相似文献   

9.
10.
11.
The cytoplasmic non-polysomal poly(A+)mRNA found in the free messenger ribonucleoprotein of mouse Taper ascites cells was demonstrated by nucleic acid hybridization to contain only about 400 different mRNA sequences, in contrast to the greater than the 8000 sequences of the total cytoplasm. Approximately 50% by mass of the free RNP3-mRNA was shown to consist of only 15 different mRNA sequences and the other 50% to represent 400 different mRNA sequences. The abundant free mRNP sequences were also present in the polysomes at one-tenth of their concentration in the free mRNP. The 400 less abundant free RNP-mRNAs were found to be in the middle abundant class of total cytoplasmic sequences. The 400 less abundant free RNP-mRNA sequences were also found on the polysomes: 50% of these sequences were at similar concentrations in the polysomes as in the free mRNP, while 50% were found in the polysomes at reduced concentrations. Thus it is concluded that these mouse tumor cells maintain a highly polarized distribution of certain subsets of mRNA species between the functioning (polysomes) and non-functioning (free mRNP) compartments of the cytoplasm.  相似文献   

12.
The mRNA species which exist in the HeLa cell polyribisomes in a form devoid of A sequences longer than 8 nucleotides constitute the poly(A)-free class of mRNA. The rapidly labelled component of this mRNA class shares no measurable sequence homology with poly(A)-containing RNA. If poly(A)-free mRNA larger than 12 S labelled for 2 h in vivo is hybridized with total cellular DNA, it hybridizes primarily with single-copy DNA. When a large excess of steady poly(A)-containing RNA is added before hybridization of labelled poly(A)-free RNA, no inhibition of hybridization occurs. This indicates the existence of a class of poly(A)-free mRNA with no poly(A)-containing counterpart. Some mRNA species can exist solely as poly(A)-containing mRNAs. These mRNAs in HeLa cells are found almost exclusively in the mRNA species present only a few times per cell (scarce sequences). Some mRNA species can exist in two forms, poly(A)containing and lacking, as evidenced by the translation data in vitro of Kaufmann et al. [Proc. Natl Acad. Sci. U.S.A. 74, 4801--4805 (1977)]. In addition, if cDNA to total poly(A)-containing mRNA is fractionated into abundant and scarce classes, 47% of the scarce class cDNA can be readily hybridized with poly(A)-free mRNA. 10% of the abundant cDNA to poly(A)-containing mRNA will hybridize with poly(A)-free sequences very rapidly while the other 90% hybridize 160 times more slowly, indicating two very different frequency distributions. The cytoplasmic metabolism of these three distinct mRNA classes is discussed.  相似文献   

13.
14.
15.
The organization of the short dispersed repetitive sequences B1 and B2 in the mouse genome was investigated by hybridization of randomly selected genomic clones with isolated and labelled in vitro B1 and B2. Cloning and restriction mapping experiments indicated that these two DNA sequences were not entirely independently distributed along mouse DNA, but approximately half of them formed heterologous pairs separated by stretches of apparently random DNA.  相似文献   

16.
The chromosomal locations of mouse DNA sequences homologous to a feline cDNA clone encoding glutamic acid decarboxylase (GAD) were determined. Although cats and humans are thought to have only one gene for GAD, GAD cDNA sequences hybridize to two distinct chromosomal loci in the mouse, chromosomes 2 and 10. The chromosomal assignment of sequences homologous to GAD cDNA was determined by Southern hybridization analysis using DNA from mouse-hamster hybrid cells. Mouse genomic sequences homologous to GAD cDNA were isolated and used to determine that GAD is encoded by a locus on mouse chromosome 2 (Gad-1) and that an apparent pseudogene locus is on chromosome 10 (Gad-1ps). An interspecific backcross and recombinant inbred strain sets were used to map these two loci relative to other loci on their respective chromosomes. The Gad-1 locus is part of a conserved homology between mouse chromosome 2 and the long arm of human chromosome 2.  相似文献   

17.
18.
Analysis of a few large L1 elements has revealed two types of tandem repeats at the 5' end: A and F. In this study, the relationships between these repeats and a series of large L1 elements has been analysed. Most of cloned L1 repeats were shown to lack either A or F sequences at their 5' ends. F sequences are found less frequently associated than A sequences to the 5' ends of L1 and an evolutionary comparison shows that the A type was introduced more recently during the evolution of the mouse genome than the F type.  相似文献   

19.
The poly(A) content of early mouse embryos fluctuates widely: after a transient increase in the one-cell embryo, there is a 70% drop in the two-cell and an approximately fivefold increase between the two-cell and early blastocyst stages (L. Pikó and K. B. Clegg, 1982, Dev. Biol.89, 362–378). To shed light on the significance of these changes, we analyzed the size distribution of total poly(A) from embryos at different stages of development by gel electrophoresis and hybridization with [3H]poly(U). The number-average size of poly(A) tracts varies only slightly, from 61 to 77 nucleotides, indicating that the changes in poly(A) content are due primarily to changes in the number of poly(A) sequences, i.e., the number of poly(A)+ mRNA. From these data, the number of poly(A)+ mRNA can be estimated as follows: ovulated egg, 1.7 × 107; one-cell embryo, 2.4 × 107; late two-cell, 0.7 × 107; late eight-cell, 1.3 × 107; and early blastocyst, 3.4 × 107. These results suggest the elimination of the bulk of maternal poly(A)+ mRNA at the two-cell stage, to be replaced by newly synthesized mRNA derived from the embryonic genome. To study the synthesis of poly(A)+ mRNA, we cultured mouse embryos in vitro with [3H]adenosine and analyzed the labeled poly(A)+ RNA as to molecular size, length of the poly(A) tail, and relative distribution of label in poly(A) vs internal locations. We observed an active incorporation of label into large-molecular-weight (average size about 2 kb) poly(A)+ RNA at all stages from the one-cell to the blastocyst. However, in the one-cell embryo, about 70% of the label was localized in the poly(A) tail, suggesting cytoplasmic polyadenylation, and only about 30% was localized in the remainder of the molecule, suggesting the complete new synthesis of a small amount of poly(A)+ RNA. Differences in the size distribution of the labeled poly(A) as compared with the total poly(A) in the one-cell embryo indicate that the labeling is not due to a general turnover of poly(A) tails, but rather to the polyadenylation of previously nonpolyadenylated, stored RNA. Significant new synthesis of poly(A)+ RNA is evident from the two-cell stage onward and most likely accounts for the sharp rise in the number of poly(A)+ RNA molecules by the early blastocyst stage.  相似文献   

20.
Five to six percent (by mass) of AKR-2B mouse embryo cell polysomal RNA consists of messenger RNA sequences which may exist in polyadenylated form. In the steady state, however, only 30–40% of these molecules are retained by extensive passage over oligo(dT)-cellulose, the remainder being present in the form of poly(A)-deficient analogues. Within experimental limits, these poly(A)-deficient analogues contain representatives of all poly(A)-containing mRNA sequences in these cells. An analysis of the kinetics of hybridization of cDNA probes enriched for either abundant or rare poly(A)-containing mRNA sequences suggests that the frequency distributions of poly(A)-containing and poly(A)-deficient analogues are dissimilar, and that a relationship exists between the intracellular frequency of a given mRNA sequence and the number of poly(A)-deficient analogues of that sequence. High frequency sequences appear to be enriched in the poly(A)-containing fraction, while low frequency sequences are predominately associated with the poly(A)-deficient fraction, thus, poly(A) may play a role in the regulation of mRNA frequency in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号