首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adrenal nerve of anaesthetized and vagotomized dogs was electrically stimulated (10 V pulses of 2 ms duration for 10 min) at frequencies of 1, 3, 10, and 25 Hz. There was a correlation between the frequency of stimulation and the plasma concentrations of epinephrine, norepinephrine, and dopamine in the adrenal vein, mainly after the 1st min of stimulation and the maximal concentration was reached sooner with higher frequencies of stimulation. Moreover, the relative percentage of catecholamines released in response to the electrical stimulation was not changed by the frequency of stimulation. To test the hypothesis that a local negative feedback mechanism mediated by alpha 2-adrenoceptors exists in the adrenal medulla, the effects of the systemic administration of clonidine (alpha 2-antagonist) on the concentrations of catecholamines in the adrenal vein were evaluated during the electrical stimulation of the adrenal nerve (5 V pulses of 2 ms duration for 3 min) at 3 Hz. Moreover, the effects of the systemic injections of more specific alpha 2-agonist and antagonist (oxymetazoline and idazoxan) were tested on the release of catecholamines in the adrenal vein in response to electrical stimulation of the splanchnic nerve at 1 and 3 Hz frequencies. The injection of 0.5 mg/kg of yohimbine caused a significant increase in the concentrations of epinephrine and norepinephrine in the adrenal vein induced by the electrical stimulation of the adrenal nerve and the injection of 15 micrograms/kg of clonidine had no effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of TA-3090 (clentiazem) and nifedipine on basal sympathoadrenal activity and on the adrenal medullary response during splanchnic nerve stimulation were studied in dogs anesthetized with sodium pentobarbital. Plasma concentrations of epinephrine and norepinephrine were measured in aortic and adrenal venous blood before and after acute administration of the drugs, as well as during left splanchnic nerve stimulation before and after administration of drugs. Following intravenous injections, TA-3090 (30, 100, and 300 micrograms/kg) did not affect basal circulating catecholamine levels, whereas nifedipine (10, 30, and 100 micrograms/kg) markedly increased aortic epinephrine and norepinephrine concentrations in a dose-dependent manner in correlation with progressive decreases in mean arterial pressure. The changes in aortic epinephrine and norepinephrine concentrations were inversely related to those in mean arterial pressure (r = 0.603, p < 0.01; r = 0.536, p < 0.01; respectively). In response to direct splanchnic nerve stimulation (2 Hz, 2 ms, 1 min, 12 V), adrenal venous epinephrine and norepinephrine concentrations significantly increased, with a high degree of reproducibility. The catecholamine responses to splanchnic nerve stimulation were not affected by either TA-3090 or nifedipine at any dose tested. The present results suggest that the increases in circulating catecholamine levels following nifedipine administration are due to baroreflex activation secondary to the drug-induced hypotension. The study indicates that both TA-3090 and nifedipine did not significantly affect L-type Ca2+ channels related to catecholamine release in the adrenal medulla under the present experimental conditions.  相似文献   

3.
E R Micalizzi  D T Pals 《Life sciences》1979,24(22):2071-2076
Measurement of plasma norepinephrine and epinephrine concentrations in the conscious, unrestrained rat yielded values of 138±10 and 55±8 pg/ml, respectively. Ganglionic blockade reduced basal norepinephrine levels without affecting plasma epinephrine levels. Adrenal demedullation reduced plasma epinephrine to undetectable levels (<20 pg/ml) and gave rise to an apparent compensatory increase in plasma norepinephrine levels. Adrenal demedullation in combination with ganglionic blockade reduced plasma norepinephrine to the same level as did ganglionic blockade alone. These observations indicated that the plasma epinephrine was of adrenal origin. Furthermore, under these experimental conditions, the results suggested that the major portion of the plasma norepinephrine was of neuronal origin. When specific destruction of the sympathetic nerve terminals without alteration of adrenal medullary function was accomplished with 6-hydroxydopamine, a fivefold increase in plasma epinephrine concentration was observed at 24 hours. Plasma norepinephrine levels at 24 hours were not significantly altered from the control levels by the 6-hydroxydopamine suggesting that the rodent adrenal medulla was capable of secreting substantial amounts of norepinephrine under these conditions. It was concluded that plasma norepinephrine concentrations reflect both sympathetic neuronal and adrenomedullary activity. However, in the absence of changes in plasma epinephrine, plasma norepinephrine appears to be an index of sympathetic neuron function.  相似文献   

4.
M R Brown  L A Fisher 《Life sciences》1986,39(11):1003-1012
Studies were performed to evaluate the effects of glucocorticoids on the activity of the sympathetic nervous system and adrenal medulla. Plasma concentrations of norepinephrine and epinephrine were measured in rats in which endogenous glucocorticoids were removed by bilateral adrenalectomy and in rats to which exogenous glucocorticoids were administered. In intact rats, dexamethasone (2.5, 25 or 250 micrograms) pretreatment suppressed ether vapor-induced elevations of norepinephrine and epinephrine concentrations in plasma. Corticosterone (3 mg/kg), similar to dexamethasone, attenuated the elevation of plasma concentrations of norepinephrine and epinephrine in rats exposed to ether vapor. Glucocorticoids did not alter the elevation of plasma catecholamines stimulated by intracerebroventricular injections of corticotropin-releasing factor or calcitonin gene-related peptide, thus demonstrating functional integrity of the sympathetic nervous system and adrenal medulla. Adrenalectomy resulted in elevation of basal plasma norepinephrine levels and accentuation of ether vapor-induced elevations of plasma norepinephrine concentrations in rats. Dexamethasone (25 ug) administration blunted the effects of adrenalectomy on both basal and ether vapor-stimulated levels of plasma norepinephrine. It is concluded that glucocorticoids acting at as yet undefined sites may be involved in the regulation of sympathetic nervous system and adrenal medullary function.  相似文献   

5.
The purpose of the present investigation was to determine the effects of endurance exercise training on adrenal medullary volume and epinephrine content in young (5 month) and old (23 month) female Fischer 344 rats. Animals from each group underwent 10 weeks of treadmill running (60 minutes per day, 5 days per week). 72 hours following the last training session animals were killed and the adrenal glands removed for subsequent analysis. Plantaris muscle citrate synthase activity increased with training in both young and old animals (39.8% young; 36.4% old). Trained animals had larger adrenal medullary volumes (48% increase in young, and 18% in old) than untrained controls. Trained animals also had higher total adrenal medullary epinephrine content (36% increase in young, and 24% in old). There were no differences in adrenal medullary epinephrine or norepinephrine concentration (micrograms/microliters medulla). It was concluded that the training-induced increase in adrenal epinephrine content is due to an increase in the size of the medulla, and not to a greater medullary epinephrine concentration. Furthermore, similar responses to training occur in both old and young animals.  相似文献   

6.
This study reports on the major source of circulating norepinephrine that is known to increase, progressively, during sustained hypoglycemia induced by intravenous insulin administration. Plasma concentrations of epinephrine, norepinephrine, and dopamine were simultaneously determined for adrenal venous and aortic blood in dogs anesthetized with sodium pentobarbital. The model used allowed us to perform a functional adrenalectomy (ADRX), while continuously monitoring the adrenal medullary secretory function. Under basal conditions, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine were 0.169 +/- 0.074, 0.067 +/- 0.023, and 0.011 +/- 0.003, respectively. Plasma concentrations (ng/mL) of aortic epinephrine, norepinephrine, and dopamine were 0.132 +/- 0.047, 0.268 +/- 0.034, and 0.034 +/- 0.009. Following insulin injection (0.15 IU/kg, i.v.), the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased gradually (p less than 0.05), reaching the values of 0.918 +/- 0.200, 0.365 +/- 0.058, and 0.034 +/- 0.007 30 min after insulin administration. Similarly, aortic epinephrine, norepinephrine, and dopamine concentrations (ng/mL) increased significantly (p less than 0.05) to 0.702 +/- 0.144, 0.526 +/- 0.093, and 0.066 +/- 0.024. The aortic glucose concentration (mg/dL) was diminished from 81.8 +/- 4.1 to 36.9 +/- 3.4 (p less than 0.01). After taking the blood sample at 30 min following insulin administration, ADRX was immediately performed. Five minutes after the onset of ADRX, the net output (micrograms/min) of adrenal epinephrine, norepinephrine, and dopamine increased further to 1.707 +/- 0.374 (p less than 0.05), 0.668 +/- 0.139 (p less than 0.05), and 0.052 +/- 0.017.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Neurohumoral, cardiovascular, and respiratory parameters were evaluated during sustained submaximal exercise (3.2 km/h, 15 degrees elevation) in normal adult mongrel dogs. At the level of activity achieved (fivefold elevation of total body O2 consumption and threefold elevation of cardiac output), significant (P less than 0.05) increases in plasma norepinephrine and epinephrine concentration (from 150 +/- 23 to 341 +/- 35 and from 127 +/- 27 to 222 +/- 31 pg/ml, respectively) were present, as well as smaller but significant increases in plasma renin activity and plasma aldosterone concentration (from 2.2 +/- 0.3 to 3.1 +/- 0.6 ng X ml-1 X h-1 and from 98 +/- 8 to 130 +/- 6 pg/ml, respectively). Plasma arginine vasopressin increased variably and insignificantly. The cardiovascular response (heart rate, systemic arterial and pulmonary arterial pressures, left ventricular filling pressure, and calculated total peripheral and pulmonary arteriolar resistance) closely paralleled that of human subjects. Increased hemoglobin concentration was induced by exercise in the dogs. The ventilatory response of the animals was characterized by respiratory alkalosis. These data suggest similarities between canine and human subjects in norepinephrine, plasma renin activity, and plasma aldosterone responses to submaximal exercise. Apparent species differences during submaximal exertion include greater alterations of plasma epinephrine concentration and a respiratory alkalosis in dogs.  相似文献   

8.
Recent experiments demonstrate that feedforward sympathetic beta-adrenoceptor coronary vasodilation occurs during exercise. The present study quantitatively examined the contributions of epinephrine and norepinephrine to exercise coronary hyperemia and tested the hypothesis that circulating epinephrine causes feedforward beta-receptor-mediated coronary dilation. Dogs (n = 10) were chronically instrumented with a circumflex coronary artery flow transducer and catheters in the aorta and coronary sinus. During strenuous treadmill exercise, myocardial oxygen consumption increased by approximately 3.9-fold, coronary blood flow increased by approximately 3.6-fold, and arterial plasma epinephrine concentration increased by approximately 2.4-fold over resting levels. At arterial concentrations matching those during strenuous exercise, epinephrine infused at rest (n = 6) produced modest increases (18%) in flow and myocardial oxygen consumption but no evidence of direct beta-adrenoceptor-mediated coronary vasodilation. Arterial norepinephrine concentration increased by approximately 5. 4-fold during exercise, and coronary venous norepinephrine was always higher than arterial, indicating norepinephrine release from cardiac sympathetic nerves. With the use of a mathematical model of cardiac capillary norepinephrine transport, these norepinephrine concentrations predict an average interstitial norepinephrine concentration of approximately 12 nM during strenuous exercise. Published dose-response data indicate that this norepinephrine concentration increases isolated coronary arteriolar conductance by approximately 67%, which can account for approximately 25% of the increase in flow observed during exercise. It is concluded that a significant portion of coronary exercise hyperemia ( approximately 25%) can be accounted for by direct feedforward beta-adrenoceptor coronary vascular effects of norepinephrine, with little effect from circulating epinephrine.  相似文献   

9.
To examine the influence of an increase in central blood volume with head-out water immersion (WI) on the sympathoadrenal response to graded dynamic exercise, nine healthy men underwent upright leg cycle exercise on land and with WI. Plasma norepinephrine and epinephrine concentrations were used as indexes of overall sympathoadrenal activity. Oxygen consumption (VO2), heart rate, systolic blood pressure, and plasma concentrations of norepinephrine, epinephrine, and lactate were determined at work loads corresponding to approximately 40, 60, 80, and 100% peak VO2. Peak VO2 did not differ on land and with WI. Plasma norepinephrine concentration was reduced (P less than 0.05) at 80 and 100% peak VO2 with WI and on land, respectively. Plasma epinephrine and lactate concentrations were similar on land and with WI at the three submaximal work stages, but both were reduced (P less than 0.05) at peak exertion with WI. Heart rate was lower (P less than 0.05) at the three highest work intensities with WI. These results suggest that the central shift in blood volume with WI reduces the sympathoadrenal response to high-intensity dynamic exercise.  相似文献   

10.
Mongrel dogs were fitted with indwelling hepatic portal catheters. After recovery from surgery, experiments were conducted in fasting, unrestrained, fully conscious, normal dogs which were accustomed to handling and withdrawal of blood samples. L-Tryptophan, a specific serotonin precursor, was injected into a saphenous vein, 10 microM/kg body weight, dissolved in saline. Plasma serotonin, dopamine, norepinephrine, and epinephrine were determined by radioenzymatic assays in blood samples withdrawn at frequent intervals for 2 h, simultaneously from the indwelling catheter and from a catheter temporarily inserted into a saphenous vein other than the one used for the injection of tryptophan. The injection of the amino acid caused a significant elevation of the concentration of platelet-free serotonin within 60 min and this was accompanied by a reduction in the concentration of the catecholamines, dopamine, norepinephrine, and epinephrine. The changes occurred only in the portal circulation and were not detected in peripheral blood samples. The results of these experiments indicate the existence of a cause and effect related interdependence between the splanchnic serotonergic and adrenergic systems in that the tryptophan-stimulated increase in serotonergic activity resulted in a concomitant reduction in gut adrenergic activity.  相似文献   

11.
H Nawata  T Yanase  K Higuchi  K Kato  H Ibayashi 《Life sciences》1985,36(20):1957-1966
The bovine adrenal medulla was investigated regarding the presence of glucocorticoid binding protein and the increases in ornithine decarboxylase (ODC) activity and epinephrine and norepinephrine by dexamethasone. Scatchard analysis of specific cytosol [3H] dexamethasone-binding study indicated a single class of high affinity (kd, 35 +/- 5 nM) and limited binding sites (150 +/- 26 fmoles/mg protein). Competition studies of various steroids indicated a high affinity for dexamethasone and hydrocortisone. Sedimentation in sucrose density gradients revealed a 7.3 S binding peak in the cytosol. Dexamethasone caused an increase in ornithine decarboxylase (ODC) activity within 1 to 2 hours after which the norepinephrine and epinephrine contents increased 16 hours after the peak of ODC activity in a dose dependent manner of dexamethasone in bovine adrenal medullary chromaffin cells in primary monolayer culture. These data suggest that the bovine adrenal medulla is a target organ of glucocorticoid hormone and that norepinephrine and epinephrine syntheses are regulated by a glucocorticoid receptor-mediated mechanism.  相似文献   

12.
Resting plasma epinephrine (E) and norepinephrine (N) concentrations for intact toads (Bufo paracnemis) were 5.57+/-1.0 and 0.88+/-0.38 ng/ml, respectively. Exercise induced a significant increase in heart rate, blood pressure and plasma epinephrine (about 4.3 times), whereas norepinephrine remained unchanged. The resting [E]/[N] ratio was 6.3 and increased to 32.9 during exercise. Adrenal denervation did not alter the basal plasma catecholamine or norepinephrine levels after exercise, but prevented the increase in epinephrine during exercise, suggesting that in the intact toad this increase is due to adrenal secretion whereas resting norepinephrine may be liberated by extra-adrenal chromaffin tissues. This also suggests that the adrenal glands can release selectively the two catecholamines. The increases in heart rate and blood pressure in denervated toads were not significantly different from those of intact animals, suggesting that during exercise the sympathetic nerves play the main role in inducing cardiovascular responses. Spinal transection induced a significant increase in basal norepinephrine levels, which remained elevated after exercise. Since spinal toads are unable to perform spontaneous movements it is possible that this increase may be caused by this stressful condition. The increases in heart rate and blood pressure observed in spinal toads during exercise may be due to direct mechanical effects of venous return on the heart.  相似文献   

13.
We measured plasma norepinephrine (NE) concentration, an index of sympathetic nervous activity, and epinephrine (E), an index of adrenal medulla activity, in six normal young men during mild to severe exercise, with and without superimposed heat stress. The primary objective was to observe whether the normally close relationship between heart rate and log NE concentration in upset when heart rate at a given work load is increased by heat stress. Exercise, beginning at 50 W, was graded in 50-W increments lasting 10 min each up to 200 W, which lasted 5-10 min. Each subject went through the protocol twice, once with skin temperature kept low by a water-perfused suit and then with skin temperature raised to 38 degrees C. Exogenous heart stress raised log circulating NE concentration in proportion to the rise in heart rate at a given work load so that the usual relationship between these variables, previously observed during other stresses, was preserved. In contrast to some other stresses, heat stress had no added effect on E concentration, indicating that this stress during exercise raises sympathetic neural activity (as reflected in the rise in NE) without stimulating additional adrenal release of E.  相似文献   

14.
Seven male sedentary human subjects were studied during intense muscular work (80% of maximal oxygen uptake) performed either for 15 min or until exhaustion (mean duration: 47 +/- 2 min). Plasma catecholamines were estimated before and after the experiment by means of an original fluorimetric assay. Epinephrine or norepinephrine were individually isolated from plasma and assayed in single extracts by a highly sensitive fluorimetric method. Epinephrine and norepinephrine levels as low as 15 ng per liter were detectable by this procedure in human plasma. The adrenergic pattern was found to be greatly different from one subject to another and related to emotivity: the effect of this factor was revealed by the predominance of epinephrine in plasma at rest or under exercise (ratio NA/A less than 1). In nonemotive subjects (ratio NA/A greater than 1 at rest) plasma epinephrine and norepinephrine increased progressively during exercise. Increments after exercise were higher for norepinephrine changes; however, the fact that epinephrine concentrations correlated significantly with norepinephrine suggests a simulataneous and coordinated stimulation of adrenal glands and orthosympathetic nervous system. In emotive subjects (ratio NA/A less than 1 at rest) the apprehension of muscular work promoted a difference in catecholamine responses: norepinephrine release was not affected by subject's anxiety, while epinephrine secretion, already elevated before the test, reached a high degree of magnitude in the first minutes of muscular work, remaining nearly constant until exhaustion. Physical training of nonemotive subjects, during 2 months with two intense exercises by a week, reduced strongly norepinephrine release after exhaustive muscular work. In the same conditions, the adrenal-medullary response was not significantly modified when compared with untrained subjects. Our results suggest that the adrenergic behaviour during exercise is a function of effort intensity to be supplied; catecholamines seem to be important factors in regulating body homeostasy during muscular work in man. In addition, emotive subjects exhibit amplified adrenal-medullary response, which may be related to psychological stimuli.  相似文献   

15.
To simultaneously monitor acetylcholine release from pre-ganglionic adrenal sympathetic nerve endings and catecholamine release from post-ganglionic adrenal chromaffin cells in the in vivo state, we applied microdialysis technique to anesthetized rats. Dialysis probe was implanted in the left adrenal medulla and perfused with Ringer's solution containing neostigmine (a cholinesterase inhibitor). After transection of splanchnic nerves, we electrically stimulated splanchnic nerves or locally administered acetylcholine through dialysis probes for 2 min and investigated dialysate acetylcholine, choline, norepinephrine and epinephrine responses. Acetylcholine was not detected in dialysate before nerve stimulation, but substantial acetylcholine was detected by nerve stimulation. In contrast, choline was detected in dialysate before stimulation, and dialysate choline concentration did not change with repetitive nerve stimulation. The estimated interstitial acetylcholine levels and dialysate catecholamine responses were almost identical between exogenous acetylcholine (10 microM) and nerve stimulation (2 Hz). Dialysate acetylcholine, norepinephrine and epinephrine responses were correlated with the frequencies of electrical nerve stimulation, and dialysate norepinephrine and epinephrine responses were quantitatively correlated with dialysate acetylcholine responses. Neither hexamethonium (a nicotinic receptor antagonist) nor atropine (a muscarinic receptor antagonist) affected the dialysate acetylcholine response to nerve stimulation. Microdialysis technique made it possible to simultaneously assess activities of pre-ganglionic adrenal sympathetic nerves and post-ganglionic adrenal chromaffin cells in the in vivo state and provided quantitative information about input-output relationship in the adrenal medulla.  相似文献   

16.
Adenosine was shown to inhibit norepinephrine (NE) release from sympathetic nerve endings. The purpose of this study was to examine whether endogenous adenosine restrains NE and epinephrine release from the adrenal medulla. The effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl) xanthine (DPSPX), on epinephrine and NE release induced by intravenous administration of insulin in conscious rats were examined. Plasma catecholamines were measured by HPLC with an electrochemical detector. DPSPX significantly increased plasma catecholamine in both control rats and rats treated with insulin. The effect of DPSPX on plasma catecholamine was significantly greater in rats treated with insulin. Additional experiments were performed in adrenalectomized rats to investigate the contribution of the adrenal medulla to the effect of DPSPX on plasma catecholamine. The effect of DPSPX and insulin on epinephrine in adrenalectomized rats was significantly reduced compared with that of the controls. Finally, we tested whether endogenous adenosine restrains catecholamine secretion partially through inhibiting the renin-angiotensin system. The effect of DPSPX on plasma catecholamine in rats pretreated with captopril (an angiotensin-converting enzyme inhibitor) was reduced. These results demonstrate that under basal physiological conditions, endogenous adenosine tonically inhibits catecholamine secretion from the adrenal medulla, and this effect is augmented when the sympathetic system is stimulated. The effect of endogenous adenosine on catecholamine secretion from the adrenal medulla is achieved partially through the inhibitory effect of adenosine on the renin-angiotensin system.  相似文献   

17.
The concentration of epinephrine, norepinephrine, dopamine, met-enkephalin-, ACTH-, calcitonin- and somatostatin-like immunoreactivity (IR) were determined in the extracts of 9 adrenal pheochromocytomas from 7 patients. Six of these patients had Sipple's syndrome. There was a close correlation between the amounts of met-enkephalin-IR and of epinephrine present in the tumor tissue (p less than 0.01). Such a correlation was not found between catecholamines and the other polypeptide hormones investigated. The relevance of the close parallel in the occurrence of met-enkephalin-IR and epinephrine in human adrenal pheochromocytoma tissue is unknown, but it underlines earlier observations in the normal bovine and rat adrenal medulla on a co-storage and co-release of these substances in normal circumstances.  相似文献   

18.
To evaluate the changes in circulating norepinephrine (NE), epinephrine (E) and dopamine-β-hydroxylase (DBH) caused by an intravenous infusion of a derivate of PGE2, sulprostone, in connection with legal termination of pregnancy, serial plasma samples were analyzed for six gravidae. Plasma catecholamines were measured by a sensitive radioenzymatic method (9,10) and DBH activities by a photometric assay (11). Intravenous infusion of sulprostone, in abortifacient doses as an intravenous infusion of 3–4 μg per minute for six to eight hours produced a decrease in circulating norepinephrine. No significant alteration was found in plasma epinephrine or dopamine-β-hydroxylase activity. The finding suggests an inhibitory effect of sulprostone on the release of norepinephrine from the adrenergic terminals without inhibition of the adrenal medulla.  相似文献   

19.
The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were significantly higher during the second exercise bout compared with the first (P < 0.05). The responses of plasma nonesterified fatty acids and plasma epinephrine were higher during the second exercise bout, whereas the response of norepinephrine was unchanged and that of growth hormone lower. Plasma insulin levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated with an increase in the exercise-induced rise of epinephrine and with lower plasma insulin values during the repeated exercise bout.  相似文献   

20.
During the last day of gestation, dopamine was higher in fetal than in maternal plasma whereas norepinephrine and epinephrine were similar. Immediately after birth, plasma norepinephrine and epinephrine fell to 10% of their levels in term fetuses, remained low in the second day of life and reached adult levels within one to two weeks. Plasma dopamine, however, did not reduce much after birth. The data are consistent with the predominance of the extra-adrenal chromaffin tissue in the fetus, its postnatal involution, and the delayed maturation of the adrenal medulla in the newborn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号