首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Circulation in exercising dogs   总被引:1,自引:0,他引:1  
  相似文献   

2.
3.
4.
5.
6.
7.
We have studied the time course of the decline in plasma catecholamines in the postexercise period in rats. Male Sprague-Dawley rats were run on the treadmill for 5 min at 31 m/min up a 15% grade. At the end of the exercise the rats were quickly anesthetized by intravenous injection of pentobarbital. Blood samples were collected as soon as possible (average of 43 s), at 2 and 7 min postexercise. Plasma epinephrine decreased from 0.79 +/- 0.09 ng/ml to 0.51 +/- 0.05 after 2 min and to 0.35 +/- 0.09 after 7 min. Plasma norepinephrine decreased from 0.89 +/- 0.16 ng/ml to 0.61 +/- 0.05 after 2 min and to 0.50 +/- 0.07 after 7 min. We also studied the effect of time of centrifugation with respect to time of blood collection on plasma catecholamines. If blood samples were kept on ice no significant change in plasma epinephrine occurred over a period of 1 h. A small (14%) but significant decrease in norepinephrine was observed after 15 and 60 min. These studies emphasize the importance of collecting rat blood samples as quickly as possible after the end of exercise. Catecholamines decline very quickly in the rat after intravenous pentobarbital anesthesia.  相似文献   

8.
Mobilization of energy sources in exercising dogs   总被引:3,自引:0,他引:3  
  相似文献   

9.
10.
11.
Melatonin is a hormone that is released from the pineal gland into the blood stream and is controlled by nerve impulses from the suprachiasmatic nuclei. Melatonin synthesis, which is inhibited by light on the mammalian retina, peaks in plasma concentrations during the night. Though still a subject of intense research, melatonin in mammals is known to effect the reproductive system, thyroid function, and adaptations to seasonal changes. Sled dogs in Fairbanks, Alaska (65 degrees N) can be exposed to anywhere from 21 h of daylight in the summer to 4 h in the winter. While light may be the primary factor influencing melatonin production, we hypothesized that exercise may also affect melatonin production. In the current study, sled dogs were used to study seasonal and diurnal variation in melatonin production. Sled dogs by nature are elite athletes and therefore exercise was a focus in the study. Both exercise and non exercise dogs from 2 distinct latitudes were used. The peak in melatonin production was prolonged in high latitude dogs (65 degrees N), compared with lower latitude dogs (45 degrees N). Dogs at both latitudes show a reduction in peak melatonin levels with exercise, and winter melatonin levels in both locations were higher than the summer. Surprisingly, sled dogs in Alaska had lower melatonin levels than sled dogs in New York.  相似文献   

12.
Noninvasive diffusing capacity and cardiac output in exercising dogs   总被引:1,自引:0,他引:1  
We have developed a rebreathing procedure to determine diffusing capacity (DLCO) and pulmonary blood flow (Qc) in the awake, exercising dog. A low dead space, leak-free respiratory mask with an incorporated mouthpiece was utilized to achieve mixing between the rebreathing bag and the dog's lung. The rebreathing bag was initially filled with approximately 1.0 liter of gas containing 0.6% C2H2, 0.3% C18O, 9% He, and 35-40% O2. End-tidal gas concentrations were measured with a respiratory mass spectrometer. The disappearance of C2H2 and C18O was measured with respect to He to calculate Qc and DLCO. Values for DLCO in dogs, expressed per kilogram of body weight, were much larger than those reported in humans. However, at a given level of absolute O2 consumption, measurements of absolute DLCO in dogs were comparable to those reported in humans by both rebreathing and steady-state methods at rest and near-maximal exercise. These results suggest that DLCO is more closely matched to the metabolic capacity (i.e., maximal O2 consumption) than to body size between these two species.  相似文献   

13.
14.
To examine the role of cardiopulmonary receptors in arterial blood pressure regulation during and after exercise, conscious dogs with chronic sinoaortic denervation were subjected to 12 min of light exercise and 12 min of exercise that increased in severity every 3 min. Hemodynamic measurements were made before and after interruption of cardiopulmonary afferents by bilateral cervical vagotomy. During both exercise protocols, after an initial transient decrease, the arterial blood pressure remained close to resting values before and after vagotomy. On cessation of the graded exercise, the arterial blood pressure did not change before, but a rapid and sustained increase in pressure occurred after vagotomy. At the time of this increase the cardiac output and heart rate were returning rapidly to the resting level. The study demonstrates that in the chronic absence of arterial baroreflexes, vagal afferents prevent a rise in arterial blood pressure after vigorous exercise presumably by the action of cardiopulmonary receptors causing a rapid dilatation of systemic resistance vessels.  相似文献   

15.
The role of the sinoaortic reflexes in the regulation of ventilation during exercise was evaluated in seven awake dogs prepared with chronic tracheostomies and arterial catheters. Each dog ran on a treadmill at several work loads before and after sinoaortic denervation and served as its own control. Minute ventilation in the sinoaortic denervated state was significantly reduced from intact values by 10-40% at the mild and moderate levels of exercise [O2 uptake (VO2) = 30-50 ml . kg-1 . min-1] mainly as a result of a lowering respiratory frequency. At higher work loads (VO2 = 70-80 ml . kg-1 . min-1) minute ventilation was similar in the intact and denervated states, but the pattern of ventilation was altered with a higher frequency and a lower tidal volume in the denervated state. The rise in ventilation toward a stable plateau was slower at all work loads in the denervated than in the intact state. After sinoaortic denervation, arterial PCO2(PaCO2) levels were significantly elevated above intact PaCO2 levels during both the preexercise period and the steady state at all exercise levels. These results suggest that the sinoaortic reflexes contribute to both the control of ventilation and the pattern of breathing during mild and heavy levels of exercise in the conscious dog.  相似文献   

16.
Feedforward sympathetic coronary vasodilation in exercising dogs.   总被引:1,自引:0,他引:1  
The hypothesis that exercise-induced coronary vasodilation is a result of sympathetic activation of coronary smooth muscle beta-adrenoceptors was tested. Ten dogs were chronically instrumented with a flow transducer on the circumflex coronary artery and catheters in the aorta and coronary sinus. During treadmill exercise, coronary venous oxygen tension decreased with increasing myocardial oxygen consumption, indicating an imperfect match between myocardial blood flow and oxygen consumption. This match was improved after alpha-adrenoceptor blockade with phentolamine but was significantly worse than control after alpha + beta-adrenoceptor blockade with phentolamine plus propranolol. The response after alpha-adrenoceptor blockade included local metabolic vasodilation plus a beta-adrenoceptor vasodilator component, whereas the response after alpha + beta-adrenoceptor blockade contained only the local metabolic vasodilator component. The large difference in coronary venous oxygen tensions during exercise between alpha-adrenoceptor blockade and alpha + beta-adrenoceptor blockade indicates that there is significant feedforward beta-adrenoceptor coronary vasodilation in exercising dogs. Coronary venous and estimated myocardial interstitial adenosine concentrations did not increase during exercise before or after alpha + beta-adrenoceptor blockade, indicating that adenosine levels did not increase to compensate for the loss of feedforward beta-adrenoceptor-mediated coronary vasodilation. These results indicate a meaningful role for feedforward beta-receptor-mediated sympathetic coronary vasodilation during exercise.  相似文献   

17.
Ascending pathways mediating somatoautonomic reflexes in exercising dogs   总被引:1,自引:0,他引:1  
The ascending spinal pathways mediating somatocardiovascular reflexes during exercise were studied in unanesthetized dogs by placing lesions in the lumbar spinal cord. After training to run on a treadmill with hindlimbs only, 20 dogs were anesthetized and instrumented using sterile surgical techniques. To chronically record heart rate and arterial blood pressure, the aorta was cannulated via the omocervical artery. To test the intactness of descending spinal sympathetic pathways, reflex pressor responses to baroreceptor hypotension were produced by bilateral carotid arterial occlusion using pneumatic vessel occluders placed around the common carotid arteries. To generate transient ischemic exercise (120 s), a pneumatic occluder was placed around the left iliac artery. Eight to 10 days after instrumentation, blood pressure and heart rate were monitored at rest and during hindlimb running with and without simultaneous iliac arterial occlusion. The modest pressor response and tachycardia elicited by hindlimb exercise were markedly augmented by simultaneous hindlimb ischemia (i.e., iliac arterial occlusion). Lesion placement in the dorsolateral sulcus area and the dorsolateral funiculus at L2 significantly reduced the blood pressure and heart rate responses to simultaneous exercise occlusion. The cardiovascular responses to nonischemic exercise and bilateral carotid arterial occlusion were not altered by such spinal sections. It is concluded that in the dog the ascending spinal pathways mediating cardiovascular responses to ischemic exercise are located in the lateral funiculus, including the dorsolateral sulcus area and dorsolateral funiculus.  相似文献   

18.
The purpose of this study was to define the relationship between arterial immunoreactive glucagon (IRG) and IRG that perfuses the liver via the portal vein during exercise in the diabetic state. Dogs underwent surgery >16 days before the experiment, at which time flow probes were implanted in the portal vein and the hepatic artery, and Silastic catheters were inserted in the carotid artery, portal vein, and hepatic vein for sampling. Dogs were made diabetic with alloxan injected intravenously approximately 3 wk before study (AD) or were studied in the nondiabetic state (ND). Each study consisted of a 30-min basal period and a 150-min moderate-exercise period on a treadmill. The findings from these studies indicate that the exercise-induced increment in portal vein IRG can be substantially greater in AD compared with ND, even when arterial and hepatic vein increments are not different. The larger IRG gradient from the portal vein to the systemic circulation in AD dogs is a function of a twofold greater increase in nonhepatic splanchnic IRG release and a fivefold greater hepatic fractional IRG extraction during exercise. In conclusion, during exercise, arterial IRG concentrations greatly underestimate the IRG levels to which the liver is exposed in ND, and this underestimation is considerably greater in dogs with poorly controlled diabetes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号