首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to determine the metabolic defect causing severe combined immunodeficiency (SCID) in horses in which altered purine metabolism has been observed, various parameters of purine and pyrimidine metabolism were evaluated. The activities of nine purine enzymes (adenosine kinase, purine nucleoside phosphorylase, deoxyadenosine kinase, deoxycytidine kinase, 5'-nucleotidase, AMP deaminase, hypoxanthine-guanine phosphoribosyl transferase, and adenine phosphoribosyl transferase were measured in fibroblasts. All activities determined for SCID horses were normal. Uptake of 10 microM adenosine or 2'-deoxyadenosine (a growth inhibitory concentration for SCID fibroblasts) by SCID fibroblasts was identical to that found for normal fibroblasts in the presence of both 1 and 50 microM phosphate. The Km determined for the transport of both adenosine and 2'-deoxyadenosine was 35 microM. In the presence of p-nitrobenzylthioguanosine (a nucleoside transport inhibitor), 2'-deoxyadenosine uptake was inhibited to the same extent in all fibroblast lines tested. To determine if the last step in pyrimidine biosynthesis might be altered in SCID fibroblasts, UMP synthase activities were evaluated but found to be normal (0.5 nmol UMP formed/min/mg protein).  相似文献   

2.
Chinese hamster ovary (CHO) cells and appropriate drug-resistant mutants derived from them have been analyzed for nucleoside kinase activities relevant to the phosphorylation of adenosine, deoxyadenosine, deoxyguanosine and deoxycytidine and for resistance to a variety of nucleoside analogs. Fractionation of extracts by DEAE-cellulose chromatography revealed three major peaks of activity. Adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20), the first to elute from the column is responsible for the majority of the deoxyadenosine phosphorylation in cell extracts and, according to resistance data, appears to phosphorylate most adenosine analogs tested, including 9-beta-D-arabinosyladenine (ara-A). A deoxyguanosine kinase, the second enzyme to elute from the column, was responsible for the majority of deoxyguanosine and deoxyinosine phosphorylation in cell extracts. The function of this enzyme in cell metabolism is unclear. 2-Chlorodeoxyadenosine, on the other hand, appeared from resistance data to be phosphorylated, at least in part, by deoxycytidine kinase (ATP:deoxycytidine 5'-phosphotransferase, EC 2.7.1.74), which in cell extracts could also phosphorylate deoxyguanosine and deoxyadenosine, though much less efficiently than deoxycytidine.  相似文献   

3.
In this study we have examined the cytotoxic effects of different concentrations of adenosine (Ado) and deoxyadenosine (dAdo) on human breast cancer cell lines. Ado and dAdo alone had little effect on cell cytotoxicity. However, in the presence of adenosine deaminase (ADA) inhibitor, EHNA, adenosine and deoxyadenosine led to significant growth inhibition of cells of the lines tested. Ado/EHNA and dAdo/EHNA-induced cell death was significantly inhibited by NBTI, an inhibitor of nucleoside transport, and 5'-amino-5'-deoxyadenosine, an inhibitor of adenosine kinase, but the effects were not affected by 8-phenyltheophylline, a broad inhibitor of adenosine receptors. The Ado/EHNA combination brought about morphological changes consistent with apoptosis. Caspase-9 activation was observed in MCF-7 and MDA-MB468 human breast cancer cell lines on treatment with Ado/EHNA or dAdo/EHNA, but, as expected, caspase-3 activation was only observed in MDA-MB468 cells. The results of the study, thus, suggest that extracellular adenosine and deoxyadenosine induce apoptosis in both oestrogen receptor-positive (MCF-7) and also oestrogen receptor-negative (MDA-MB468) human breast cancer cells by its uptake into the cells and conversion to AMP (dAMP) followed by activation of nucleoside kinase, and finally by the activation of the mitochondrial/intrinsic apoptotic pathway.  相似文献   

4.
Human placental deoxyadenosine and deoxyguanosine phosphorylating activity   总被引:2,自引:0,他引:2  
We studied deoxyadenosine and deoxyguanosine phosphorylating activities in human placental cytosol. The specific activities of nucleoside kinase enzymes in nanomoles per h per mg +/- SD were as follows: adenosine kinase, 30 +/- 14; deoxyadenosine kinase, 12 +/- 2; deoxycytidine kinase, 0.30 +/- 0.04; and deoxyguanosine kinase, 27 +/- 16. Three major activities were resolved by ion exchange and affinity chromatography: deoxyguanosine-deoxycytidine kinase, deoxycytidine-deoxyadenosine kinase, and adenosine-deoxyadenosine kinase. Two other activities contained significant quantities of deoxyadenosine kinase. Deoxyguanosine-phosphorylating activity eluted as a single peak in association with deoxycytidine kinase. This deoxyguanosine-deoxycytidine kinase had an apparent molecular weight of 54,000, a Stokes radius of 31 A, and apparent Km values of 10, 130, and 14 microM for deoxyguanosine, deoxycytidine, and ATP, respectively. Four peaks of deoxyadenosine phosphorylating activity were resolved by affinity chromatography with AMP-Sepharose 4B. Adenosine-deoxyadenosine kinase had an apparent molecular weight of 38,000, a Stokes radius of 27.4 A, and apparent Km values of 0.4, 510, and 75 microM for adenosine, deoxyadenosine, and ATP, respectively. Attempts to distinguish whether adenosine-deoxyadenosine kinase was one enzyme with these two activities or two separate enzymes suggested that the former was the case. Deoxycytidine-deoxyadenosine kinase had apparent Km values of 0.7, 670, and 12 microM for deoxycytidine, deoxyadenosine, and ATP, respectively. Its apparent molecular weight was estimated to be 49,000 and its Stokes radius 30 A. Two other minor peaks of deoxyadenosine-phosphorylating activity had characteristics different from either deoxycytidine kinase or adenosine kinase-associated deoxyadenosine kinase. Our studies indicate that human placental cytosol contains a complex mixture of nucleoside kinase enzymes.  相似文献   

5.
Deoxycoformycin-treated P388 and L1210 mouse leukemia cells salvage 2'-deoxyadenosine from the medium only inefficiently, because deoxyadenosine deamination is blocked and its phosphorylation is limited by feedback controls. Mycoplasma contamination at a level that had no significant effect on the growth of the cells increased the salvage of deoxyadenosine greater than 10 fold over a 90 min period of incubation at 37 degrees C, but in this case deoxyadenosine was mainly incorporated into ribonucleotides and RNA via adenine formed from deoxyadenosine by mycoplasma adenosine phosphorylase. Deoxyadenosine was an efficient substrate for this enzyme, in contrast to 2',3'-dideoxyadenosine which was not phosphorolyzed. Mycoplasma infection was confirmed by the presence of uracil phosphoribosyltransferase activity and by culture isolation. The contaminant has been identified as Mycoplasma orale. Mycoplasma infection had no effect on the deamination and phosphorylation of deoxyadenosine and adenosine, on the salvage of hypoxanthine and adenine, or on the degradation of dAMP and dATP by the cells or on their acid and alkaline phosphatase activities.  相似文献   

6.
Purine nucleoside kinases in human T- and B-lymphoblasts   总被引:1,自引:0,他引:1  
Purine nucleoside kinases in human B- and T-lymphoblasts were fractionated by DEAE-cellulose chromatography. Human B-lymphoblast cell extracts showed three peaks of nucleoside kinase activities, adenosine kinase (EC 2.7.1.20), deoxyguanosine kinase and deoxycytidine kinase (EC 2.7.1.74). However, T-lymphoblast cell extracts showed a nucleoside kinase activity which phosphorylates deoxycytidine, deoxyadenosine and deoxyguanosine, similar to deoxycytidine kinase, in addition to the three nucleoside kinases. The Km values of T-lymphoblast-specific nucleoside kinase for deoxyadenosine and deoxyguanosine, 15 and 26 microM, respectively, were smaller than those of deoxycytidine kinase, 150 and 330 microM, respectively. Deoxyadenosine phosphorylation by deoxycytidine kinase was strongly inhibited by dCTP, but the phosphorylation by T-lymphoblast-specific nucleoside kinase was only weakly inhibited by dCTP. Deoxyadenosine phosphorylating activity in B-lymphoblast extracts was more distinctly inhibited by dCTP than that in T-lymphoblast extracts.  相似文献   

7.
Mutant sublines were derived of S49 mouse T-lymphoma cells that were resistant to tritiated deoxyadenosine. Twenty-five isolates that were selected in 1 microCi/ml of the nucleoside were cross-resistant to 6-thioguanine, were sensitive to HAT (hypoxanthine, aminopterin, and thymidine), and contained less than 1% of hypoxanthine phosphoribosyltransferase activity in wild-type cells. One of the mutant clones, S49-dA2, was further subjected to selection in a medium containing 2 microCi/ml tritiated deoxyadenosine and 1 microgram/ml deoxycoformycin, an inhibitor of adenosine deaminase. All resistant subclones were cross-resistant to tubercidin, 6-methylmercaptopurine riboside, and arabinosyladenine. One of the subclones, S49-12, was completely devoid of adenosine kinase and was partially deficient in deoxyadenosine kinase. This subclone, however, contained wild-type levels of deoxycytidine kinase. DEAE chromatography of the wild-type cell extracts revealed two deoxyadenosine phosphorylating activities, one of which coeluted with adenosine kinase and was the enzyme missing in S49-12. The other species phosphorylated both deoxyadenosine and deoxycytidine, of which deoxycytidine was the preferred substrate.  相似文献   

8.
1. The role of adenosine deaminase (EC 3.5.4.4), ecto-(5'-nucleotidase) (EC 3.1.3.5) and ecto-(non-specific phosphatase) in the CN-induced catabolism of adenine nucleotides in intact rat polymorphonuclear leucocytes was investigated by inhibiting the enzymes in situ. 2. KCN (10mM for 90 min) induced a 20-30% fall in ATP concentration accompanied by an approximately equimolar increase in hypoxanthine, ADP, AMP and adenosine concentrations were unchanged, and IMP and inosine remained undetectable ( less than 0.05 nmol/10(7) cells). 3. Cells remained 98% intact, as judged by loss of the cytoplasmic enzyme lactate dehydrogenase (EC 1.1.1.27). 4. Pentostatin (30 microM), a specific inhibitor of adenosine deaminase, completely inhibited hypoxanthine production from exogenous adenosine (55 microM), but did not black CN-induced hypoxanthine production or cause adenosine accumulation in intact cells. This implied that IMP rather than adenosine was an intermediate in AMP breakdown in response to cyanide. 5. Antibodies raised against purified plasma-membrane 5'-nucleotidase inhibited the ecto-(5'-nucleotidase) by 95-98%. Non-specific phosphatases were blocked by 10 mM-sodium beta-glycerophosphate. 6. These two agents together blocked hypoxanthine production from exogenous AMP and IMP (200 microM) by more than 90%, but had no effect on production from endogenous substrates. 7. These data suggest that ectophosphatases do not participate in CN-induced catabolism of intracellular AMP in rat polymorphonuclear leucocytes. 8. A minor IMPase, not inhibited by antiserum, was detected in the soluble fraction of disrupted cells.  相似文献   

9.
B Ullman  L J Gudas  A Cohen  D W Martin 《Cell》1978,14(2):365-375
The inherited absence of either adenosine deaminase (ADA) or purine nucleoside phosphorylase is associated with severe immunological impairment. We have developed a cell culture model using a mouse T cell lymphoma to simulate ADA deficiency and to study the relationship between purine salvage enzymes and immune function. 2′-deoxyadenosine triphosphate (deoxyATP) levels have been shown to be greatly elevated in erythrocytes of immunodeficient, ADA-deficient patients, suggesting that deoxyadenosine is the potentially toxic substrate in ADA deficiency. Using a potent ADA inhibitor, we have demonstrated that deoxyadenosine is growth-inhibitory and cytotoxic to S49 cells, and that deoxyATP accumulates in these cells. Cell variants, unable to transport or phosphorylate deoxyadenosine, are much less sensitive to deoxyadenosine, indicating that intracellular phosphorylation of deoxyadenosine is required for the lethal effects.We have partially reversed the cytotoxic effects of deoxyadenosine with deoxycytidine in wild-type cells, but we cannot show any reversal in cell lines lacking deoxycytidine kinase. Adenosine (ado) kinase-deficient cells are extremely resistant to deoxyadenosine in the presence of deoxycytidine. This deoxycytidine reversal of deoxyadenosine toxicity is consistent with an inhibition of ribonucleotide reductase by deoxyATP, and we have shown that incubation of S49 cells with deoxyadenosine markedly reduces intracellular levels of deoxyCTP, deoxyGTP and TTP.Kinetics data in wild-type cells and in cell variants are consistent with the presence of two deoxyadenosine-phosphorylating activities — one associated with ado kinase and another associated with deoxycytidine kinase.The S49 cells appear to be a valid model for the simulation of ADA deficiency in cell culture, and from our results, we can suggest administration of deoxycytidine as a pharmacological regimen to circumvent the clinicopathologic symptoms in ADA deficiency.  相似文献   

10.
2'-Deoxyadenosine and 9-beta-D-arabinofuranosyladenine (ARA) are apparent suicide inhibitors for equine S-adenosylhomocysteine hydrolase. In initial velocity studies of the synthetic reaction converting adenosine and homocysteine to S-adenosylhomocysteine, adenine, adenosine 5'-triphosphate, and 9-beta-D-arabinofuranosyladenine were found to be competitive inhibitors with Kis of 3.8 microM, 1.1 mM, and 30 microM, respectively. In contrast, linear mixed inhibition was observed for 2'-deoxyadenosine, indicating that 2'-deoxyadenosine must bind in more than one fashion to the enzyme.  相似文献   

11.
Both 2',3'-dideoxyadenosine and 2',3'-dideoxyinosine have been shown (Mitsuya, H., and Broder, S. (1987) Nature 325, 773-778) to have in vitro activity against the human immunodeficiency virus-1 (HIV). However, these dideoxynucleosides may be catabolized by human T cells, even when adenosine deaminase is inhibited by deoxycoformycin. To overcome this problem, we have synthesized the 2-fluoro-, 2-chloro-, and 2-bromo-derivatives of 2',3'-dideoxyadenosine. The metabolism and anti-HIV activity of the 2-halo-2',3'-dideoxyadenosine derivatives and of 2',3'-dideoxyadenosine were compared. The 2-halo-2',3'-dideoxyadenosine derivatives were not deaminated significantly by cultured CEM T lymphoblasts. Experiments with 2-chloro-2',3'-dideoxyadenosine showed that the T cells converted the dideoxynucleoside to the 5'-monophosphate, 5'-diphosphate, and 5'-triphosphate metabolites. At concentrations lower than those producing cytotoxicity in uninfected cells (3-10 microM), the 2-halo-2',3-dideoxyadenosine derivatives inhibited the cytopathic effects of HIV toward MT-2 T lymphoblasts, and retarded viral replication in CEM T lymphoblasts. Experiments with a deoxycytidine kinase-deficient mutant CEM T cell line showed that this enzyme was necessary for the phosphorylation and anti-HIV activity of the 2-chloro-2',3'-dideoxyadenosine. In contrast, 2',3'-dideoxyadenosine was phosphorylated by the deoxycytidine kinase-deficient mutant and retained anti-HIV activity in this cell line. Thus, the 2-halo derivatives of 2',3'-dideoxyadenosine, in contrast to 2',3'-dideoxyadenosine itself, are not catabolized by T cells. Their anti-HIV and anti-proliferative activities are manifest only in cells expressing deoxycytidine kinase. The in vivo implications of these results for anti-HIV chemotherapy are discussed.  相似文献   

12.
The ability of inosine 5'-monophosphate vs inosine or hypoxanthine to supply the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells was evaluated. Mitogen-stimulated human peripheral blood T cells were treated with aminopterin to inhibit purine synthesis de novo and make the cells dependent upon an exogenous purine source. Thymidine was added as a source of pyrimidines. Under these conditions, 25 microM inosine 5'-monophosphate, inosine, and hypoxanthine showed comparable abilities to support [3H]thymidine incorporation into DNA at rates equal to that of untreated control cultures. In parallel experiments with the rapidly dividing human B lymphoblastoid cell line, WI-L2, treatment with aminopterin (plus thymidine) inhibited the growth rate by greater than 95%. The normal growth rate was restored by the addition of 30 microM inosine 5'-monophosphate, inosine, or hypoxanthine to the medium. However, in similar experiments with cell line No. 1254, a derivative of WI-L2 which lacks detectable ecto-5'-nucleotidase activity, only inosine and hypoxanthine (plus thymidine), but not inosine 5'-monophosphate (and thymidine) were able to restore the growth inhibition due to aminopterin. These results show that the catalytic activity of ecto-5'-nucleotidase is sufficient to meet the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells and suggest that this enzyme may have functional significance when rates of purine synthesis de novo are limited and/or an extracellular source of purine nucleotides is available.  相似文献   

13.
Deoxynucleoside Kinases of Bacillus megaterium KM   总被引:2,自引:0,他引:2       下载免费PDF全文
Dialyzed extracts of Bacillus megaterium KM contain thymidine, deoxyadenosine, and deoxyguanosine kinase activities. Thymidine kinase activity is best with deoxyadenosine triphosphate or deoxyguanosine triphosphate (dGTP) as the phosphoryl donor, whereas the best deoxyadenosine kinase activity is obtained with dGTP or adenosine triphosphate. Deoxyguanosine kinase activity functions optimally with deoxycytidine triphosphate as the donor. Although the thymidine kinase activity of crude extracts does not have a demonstrable divalent cation requirement, the addition of Mg(2+) or Mn(2+) is necessary for the formation of thymidine di- and triphosphates. The synthesis of thymidine kinase appears to be partially derepressed by thymine starvation. Incubation of extracts with deoxyadenosine and dGTP results in the substantial accumulation of deoxyadenosine di- and triphosphates. Extracts deaminate deoxycytidine to deoxyuridine, presumably as a consequence of the action of deoxycytidine deaminase, and then convert deoxyuridine to deoxyuridylic acid. B. megaterium extracts do not contain any detectable deoxycytidine kinase activity.  相似文献   

14.
A microassay requiring as few as 2 X 10(5) cells per assay was developed for systematic analysis of 9 purine enzymes in lymphocytes from equine peripheral blood, spleen, lymph node, thymus and bone marrow. The activities of adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), adenosine kinase (AK), deoxyadenosine kinase (dAK), deoxycytidine kinase (dCK), 5'-nucleotidase (5'-N), AMP deaminase, hypoxanthine-guanine phosphoribosyl transferase (HGPRT or HPRT), and adenine phosphoribosyl transferase (APRT) were measured by this microassay in lymphocytes from peripheral blood from four different breeds of horses (Arabian, Quarter Horse, Thoroughbred and Shetland Pony). There were no significant differences in the enzyme activities among the various breeds. Peripheral blood lymphocytes (PBL) from foals exhibited enzyme activities similar to those observed for adult animals. All lymphoid tissue contained similar levels of activity for each kinase (AK, dAK and dCK). Spleen had the highest activity for ADA, PNP, 5'-N, and HGPRT. The lowest activity for ADA, APRT, PNP and AMP deaminase was found in thymus. Enzymatic activities that varied the most among the tissue were 5'-N, ADA, APRT, HGPRT and AMP deaminase.  相似文献   

15.
We have shown previously that a low concentration of tritiated deoxyadenosine, i.e., 1 µCi/ml, selectively kills wild-type S49 murine lymphoma cells. Mutant cells resistant to [3H]deoxyadenosine lacked adenosine kinase completely but retained a significant level of deoxyadenosine phosphorylating activity. To study further the specificity of [3H]deoxyadenosine selection, lymphoma cell clones resistant to 15 µCi/ml [3H]deoxyadenosine have been derived. The resistant line, S49-dA15, is also resistant to high levels of nonradioactive deoxyadenosine and to deoxyguanosine but remains sensitive to thymidine. The thymidine inhibition of the growth of the mutant, in contrast to that of the wild-type cells, cannot be prevented by deoxycytidine. The mutant line lacks deoxycytidine kinase that also phosphorylates deoxyadenosine. In addition, the mutant cells excrete a large amount of deoxycytidine into culture medium, consistent with a failure of salvage of the nucleoside in the absence of an appropriate kinase, i.e., deoxycytidine kinase. In contrast, a deoxycytidine kinase-deficient cell line that was selected with arabinosylcytosine does not excrete deoxycytidine and contains high deoxycytidine deaminase activity. [3H]Deoxyadenosine can be used as a selective agent for specific selection of deoxycytidine kinase-negative mutants.  相似文献   

16.
Selective adenosine release from human B but not T lymphoid cell line   总被引:5,自引:0,他引:5  
Intracellular adenosine formation and release to extracellular space was studied in WI-L2-B and SupT1-T lymphoblasts under conditions which induce or do not induce ATP catabolism. Under induced conditions, B lymphoblasts but not T lymphoblasts, release significant amounts of adenosine, which are markedly elevated by adenosine deaminase inhibitors. In T lymphoblasts, under induced conditions, only simultaneous inhibition of both adenosine deaminase activity and adenosine kinase activities resulted in small amounts of adenosine release. Under noninduced conditions, neither B nor T lymphoblasts release adenosine, even in the presence of both adenosine deaminase or adenosine kinase inhibitors. Comparison of B and T cell's enzyme activities involved in adenosine metabolism showed similar activity of AMP deaminase, but the activities of AMP-5'-nucleotidase, adenosine kinase and adenosine deaminase differ significantly. B lymphoblasts release adenosine because of their combination of enzyme activities which produce or utilize adenosine (high AMP-5'-nucleotidase and relatively low adenosine kinase and adenosine deaminase activities). Accelerated ATP degradation in B lymphoblasts proceeds not only via AMP deamination, but also via AMP dephosphorylation into adenosine but its less efficient intracellular utilization results in the release of adenosine from these cells. In contrast, T lymphoblasts release far less adenosine, because they contain relatively low AMP-5'-nucleotidase and high adenosine kinase and adenosine deaminase activities. In T lymphoblasts, AMP formed during ATP degradation is not readily dephosphorylated to adenosine but mainly deaminated to IMP by AMP deaminase. Any adenosine formed intracellularly in T lymphoblasts is likely to be efficiently salvaged back to AMP by an active adenosine kinase. In general, these results may suggest that adenosine can be produced only by selective cells (adenosine producers) whereas other cells with enzyme combination similar to SupT1-T lymphoblasts can not produce significant amounts of adenosine even in stress conditions.  相似文献   

17.
The ability of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells to drive their total purine requirements from inosine 5'-monophosphate, inosine, or hypoxanthine was compared. Inosine 5'-monophosphate first must be converted to inosine by the action of the enzyme ecto-5'-nucleotidase before it can be transported into the cell; inosine and hypoxanthine, however, can be transported directly. Mitogen-stimulated human peripheral blood T cells were treated with aminopterin to inhibit purine synthesis de novo and to make the cells dependent on an exogenous purine source. Thymidine was added as a source of pyrimidines. Under these conditions, 30 microM inosine 5'-monophosphate, inosine, and hypoxanthine showed comparable abilities to support [3H]thymidine incorporation into DNA or [3H]leucine incorporation into protein at rates equal to that of untreated control cultures. Similar results were found when azaserine was used to inhibit purine synthesis de novo, and thus DNA synthesis. In parallel experiments with the rapidly dividing human B lymphoblastoid cell line WI-L2, treatment with aminopterin (plus thymidine) inhibited the growth rate by greater than 95%. The normal growth rate was restored by the addition of 30 microM inosine 5'-monophosphate, inosine, or hypoxanthine to the medium. However, in similar experiments with cell line 1254, a derivative of WI-L2 which lacks detectable ecto-5'-nucleotidase activity, inosine and hypoxanthine (plus thymidine), but not inosine 5'-monophosphate (and thymidine) were able to restore the growth inhibition due to aminopterin. These results show that the catalytic activity of ecto-5'-nucleotidase is sufficient to meet the total purine requirements of mitogen-stimulated human T cells or rapidly dividing human B lymphoblastoid cells, and suggest that this enzyme may be important for purine salvage when rates of purine synthesis de novo are limited and/or an extracellular source of purine nucleotides is available.  相似文献   

18.
Two equilibrative (facilitated diffusion) nucleoside transport processes and a concentrative Na(+)-dependent co-transport process contribute to zero-trans inward fluxes of nucleosides in L1210 mouse leukemia cells. Na(+)-linked inward adenosine fluxes in L1210/AM cells (a clone deficient in adenosine, deoxyadenosine, and deoxycytidine kinase activities) were measured as initial rates of [3H]adenosine influx in medium containing Na+ salts and 10 microM dipyridamole. The Na(+)-linked transporter distinguished between the D- and L-enantiomers of adenosine, the latter being a virtual nonpermeant in the initial-rate assay. Adenine arabinoside, inosine, 2'-deoxyadenosine and 2'-deoxyadenosine derivatives with halogen atoms at the purine C-2 position were recognized as substrates of the Na(+)-linked system because of their inhibition of adenosine (10 microM) fluxes under the condition of Na(+)-dependence with IC50 values ranging between 25 and 183 microM; uridine, deoxycytidine, and cytosine arabinoside (each at 400 microM) inhibited adenosine fluxes by 10-40%. Inward Na(+)-linked adenosine fluxes were saturable with respect to extracellular adenosine and Na+ concentrations [( Na+]o); Km and Vmax values for adenosine influx were 9.4 +/- 2.6 microM and 1.67 +/- 0.2 pmol/microliter cell water/s when [Na+]o was 100 mM. The stoichiometry of Na+:adenosine co-transport, determined by Hill analysis of the dependence of adenosine fluxes on [Na+]o, was 1:1. The thiol-reactive agents, N-ethylmaleimide (NEM), showdomycin and p-chloromercuriphenylsulphonate (pCMPS), inhibited Na(+)-linked adenosine fluxes with IC50 values of 40, 10, and 2 microM, respectively. This inhibition was partially reversed by the presence of adenosine in incubation media containing pCMPS, but not NEM. Thiol groups accessible to pCMPS may be involved in substrate recognition by the transporter and in the permeation step.  相似文献   

19.
The inborn deficiency of adenosine deaminase is characterised by accumulation of excess amounts of cytotoxic deoxyadenine nucleotides in lymphocytes. Formation of dATP requires phosphorylation of deoxyadenosine by deoxycytidine kinase (dCK), the main nucleoside salvage enzyme in lymphoid cells. Activation of dCK by a number of genotoxic agents including 2-chlorodeoxyadenosine, a deamination-resistant deoxyadenosine analogue, was found previously. Here, we show that deoxyadenosine itself is also a potent activator of dCK if its deamination was prevented by the adenosine deaminase inhibitor deoxycoformycin. In contrast, deoxycytidine was found to prevent stimulation of dCK by various drugs. The activated form of dCK was more resistant to tryptic digestion, indicating that dCK undergoes a substrate-independent conformational change upon activation. Elevated dCK activities were accompanied by decreased pyrimidine nucleotide levels whereas cytotoxic dATP pools were selectively enhanced. dCK activity was found to be downregulated by growth factor and MAP kinase signalling, providing a potential tool to slow the rate of dATP accumulation in adenosine deaminase deficiency.  相似文献   

20.
The optimal assay conditions and specificity for the principal reactions of purine nucleoside phosphorylation were studied in mouse thymocytes. The following relative activities were obtained for the nucleoside substrates: adenosine, 100; deoxyguanosine, 24; and deoxyadenosine, 14. The phosphorylation of adenosine, 45 microM, was optimal between pH 5.8 and 6.0 with a millimolar Mg:ATP ratio of 1:5. This activity was insensitive to inhibition by other nucleosides and dCTP. Optimal phosphorylation of deoxyguanosine, 350 microM, occurred at pH 8.4 with a millimolar Mg:ATP ratio of 10:3.5. Phosphorylation of 80 microM deoxyguanosine was inhibited approximately 90% by 10 microM deoxycytidine or dCTP and was inhibited 70% by 200 microM deoxyadenosine but unaffected by adenosine. Deoxyadenosine, 450 microM, phosphorylation was optimal between pH 6.5 and 8.5 with a millimolar Mg:ATP ratio of 5:1. Phosphorylation of deoxyadenosine, 100 microM, was partially inhibited by 200 microM adenosine, 34%; 200 microM deoxyguanosine, 10%; and 100 microM deoxycytidine or dCTP, 33%. Only deoxyadenosine phosphorylation was inhibited by 200 microM deoxyinosine, 10%. These results and those obtained from isokinetic sucrose density gradient analysis are consistent with there being a specific adenosine kinase, a faster sedimenting deoxycytidine kinase of broad specificity which also catalyzes the phosphorylation of deoxyguanosine and deoxyadenosine, and a specific deoxyguanosine kinase sedimenting more rapidly than either of the other activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号