首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gramicidin S (GS) is a cyclic decapeptide antibiotic active against both Gram‐positive and Gram‐negative bacteria as well as against several pathogenic fungi. However, clinical application of GS is limited because of GS hemolytic activity. The large number of GS analogues with potentially attenuated hemolytic activity has been developed over the last two decades. For all new GS derivatives, the antimicrobial test is accompanied with the hemolytic activity assay. At the same time, neither GS nor its analogues were tested against other blood cells. In the present work, the effects of GS on platelets and platelet aggregates have been studied. GS interaction with platelets is concentration dependent and leads either to platelet swelling or platelet shape change. Effect of GS on platelets is independent of platelet aggregation mechanism. GS induces disaggregation of platelet aggregates formed in the presence of aggregation agonists. The rate of the GS interaction with platelet membranes depends on membrane lipid mobility and significantly increases with temperature. The interaction of GS with the platelet membranes depends strongly on the state of the membrane lipids. Factors affecting the membrane lipids (temperature, lipid peroxidation and ionising irradiation) modify GS interaction with platelets. Our results show that GS is active not only against erythrocytes but also against other blood cells (platelets). The estimated numbers of GS molecules per 1 µm2 of a blood cell required to induce erythrocyte hemolysis and disaggregation of platelet aggregates are comparable. This must be considered when developing new antimicrobial GS analogues with improved hemolytic properties. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Although cell lysis by the hemolytic peptide, melittin, has been extensively studied, the role of specific lipids of the erythrocyte membrane on melittin-induced hemolysis remains unexplored. In this report, we have explored the modulatory role of cholesterol on the hemolytic activity of melittin by specifically depleting cholesterol from rat erythrocytes using methyl-beta-cyclodextrin (MbetaCD). Our results show that the hemolytic activity of melittin is increased by approximately 3-fold upon depletion of erythrocyte membrane cholesterol by approximately 55% without any appreciable loss of phospholipids. This result constitutes the first report demonstrating that the presence of cholesterol inhibits the lytic activity of melittin in its natural target membrane, i.e., the erythrocyte membrane. These results are relevant in understanding the role of cholesterol in the mechanism of action of melittin in the erythrocyte membrane.  相似文献   

3.
Lipid peroxidation leads to damage of polyunsaturated fatty acids of membrane phospholipids. The contribution of oxidative stress to hypercholesterolemia-induced hemolytic anemia and the effects of addition of taurine on erythrocyte lipid composition, oxidative stress, and hematological data were studied in rabbits fed on a high cholesterol (HC) diet (1%, w/w) for 2 months. The effects of taurine on erythrocyte hemolysis and H2O2-induced lipid peroxidation were investigated in normal rabbit erythrocytes in vitro. The HC diet resulted in increases in plasma lipids and lipid peroxide levels as well as increases in cholesterol levels and the cholesterol:phospholipid ratio in the erythrocytes. This diet caused a hemolytic anemia, but lipid peroxide levels remained unchanged in the erythrocytes of the rabbits. Taurine (2.5%, w/w) added to the food has an ameliorating effect on plasma lipids and lipid peroxide levels in rabbits fed on a HC diet. This treatment also caused decreases in elevated erythrocyte cholesterol levels and cholesterol:phospholipid ratio due to the HC diet, but it did not prevent the hemolytic anemia and did not change erythrocyte lipid peroxide levels. In addition, in an in vitro study, taurine did not protect erythrocytes against H2O2-induced hemolysis or lipid peroxidation. These results show that the HC diet causes hemolytic anemia without any changes in erythrocyte lipid peroxidation, and taurine treatment was not effective against hemolytic anemia caused by the HC diet.  相似文献   

4.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erythrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists a monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate and sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

5.
Aqueous extracts of the edible mushroom, Pleurotus ostreatus, contain a substance that is lytic in vitro for mammalian erthrocytes. The hemolytic agent, pleurotolysin, was purified to homogeneity and found to be a protein lacking seven of the amino acids commonly found in proteins. In the presence of sodium dodecyl sulfate it exists as monomers of molecular weight 12 050 whereas under non-dissociating conditions it appears to exist as dimers. It is isoelectric at about pH 6.4. The sensitivity of erythrocytes from different animals correlates with sphingomyelin content of the erythrocyte membranes. Sheep erythrocyte membranes inhibit pleurotolysin-induced hemolysis and the inhibition is time and temperature dependent. Ability of membranes to inhibit hemolysis is abolished by prior treatment of membranes with specific phospholipases. Pleurotolysin-induced hemolysis is inhibited by liposomes prepared from cholesterol, dicetyl phosphate adn sphingomyelin derived from sheep erythrocytes whereas a variety of other lipid preparations fail to inhibit. It is concluded that sphingomyelin plays a key role in the hemolytic reaction.  相似文献   

6.
Binding properties of Paracentrotus lividus (Echinoidea) hemolysin.   总被引:2,自引:0,他引:2  
1. Paracentrotus lividus hemolysin binds erythrocytes, zymosan particles, lipopolysaccharide and laminarin surfaces but not auto and allogeneic cell membranes. 2. The binding could, at least for erythrocytes, involve phospholipids and cholesterol. 3. The protease activity of the coelomic fluid is not related to hemolysis. 4. The finding that very low concentrations of Zn2+ inactivate the hemolysin suggests a possible regulative function of the ion in the hemolytic reaction. 5. Ultrastructural observations on rabbit erythrocyte membranes indicate that most likely the transmembrane pores are induced by the lytic molecules.  相似文献   

7.
1. The hemolysis by serratamic acid, "N-(D-3-hydroxydecanoyl)-L-serine and N-(D-3-hydroxydodecanoyl)-L-serine", was investigated with human and animal erythrocytes using serratamic acid-containing liposomes. 2. The hemolytic activity was found to depend on the incubation temperature and the concentration of the liposomes. 3. The concentration of serratamic acid for 50% hemolysis was 0.17 mM at 37 degrees C for 0.2% human erythrocyte suspension in the liposomes which composed of phosphatidylserine, cholesteryl nervonate and serratamic acid (1:0.50:0.37 by mol). 4. The hemolysis was shown specifically in human, horse and rabbit erythrocytes containing phosphatidylcholine, but not in sheep or bovine erythrocytes lacking phosphatidylcholine. 5. The hemolytic activity was strongly inhibited by the exogenous addition of phosphatidylcholine. It was suggested that the hemolysis by serratamic acid-containing liposomes was specific for phosphatidylcholine-containing erythrocyte membranes.  相似文献   

8.
The presence of cholesterol or phosphatidylethanolamine in sphingomyelin liposomes enhanced 2- to 10-fold the breakdown of sphingomyelin by sphingomyelinase from Bacillus cereus. On the other hand, the presence of phosphatidylcholine was either without effect or slightly stimulative at a higher molar ratio of phosphatidylcholine to sphingomyelin (3/1). In the bovine erythrocytes and their ghosts, the increase by 40-50% or the decrease by 10-23% in membranous cholesterol brought about acceleration or deceleration of enzymatic degradation of sphingomyelin by 50 or 40-50%, respectively. The depletion of ATP (less than 0.9 mg ATP/100 ml packed erythrocytes) enhanced K+ leakage from, and hot hemolysis (lysis without cold shock) of, bovine erythrocytes but decelerated the breakdown of sphingomyelin and hot-cold hemolysis (lysis induced by ice-cold shock to sphingomyelinase-treated erythrocytes), either in the presence of 1 mM MgCl2 alone or in the presence of 1 mM MgCl2 and 1 mM CaCl2. Also, ATP depletion enhanced the adsorption of sphingomyelinase onto bovine erythrocyte membranes in the presence of 1 mM CaCl2 up to 81% of total activity, without appreciable K+ leakage and hot or hot-cold hemolysis. These results suggest that the presence of cholesterol or phosphatidylethanolamine in biomembranes makes the membranes more susceptible to the attack of sphingomyelinase from B. cereus and that the segregation of lipids and proteins in the erythrocyte membranes by ATP depletion causes the deceleration of sphingomyelin hydrolysis despite the enhanced enzyme adsorption onto the erythrocyte membranes.  相似文献   

9.
Cholesterol diet-induced hemolytic anemia in rats was described. When rats were fed a cholesterol diet for 11 weeks, serum cholesterol rapidly increased within the first week, and was maintained in 5-10 times higher levels throughout the study as compared to those of control rats. Erythrocyte count, hematocrit and hemoglobin concentration decreased from about 2 weeks of feeding. The spleen showed an increase of hemosiderin deposition from 6 weeks of feeding. The half life of erythrocytes labelled with 51Cr was shortened significantly at 6 weeks of feeding. These findings indicate that cholesterol diet can induce hemolytic anemia. Serum cholesterol and phospholipid were markedly increased, but in erythrocyte membrane, free cholesterol content was not persistently increased and phospholipid content was decreased. In hemorrheological studies, erythrocyte deformability and mechanical hemolysis tended to reduce. In conclusion, it was considered that as a result of reduced phospholipid content the erythrocytes of cholesterol-fed rats were decreased in its deformability and were captured more easily by the spleen. The profile of hemolytic anemia in cholesterol-fed rats was quite different from those reported in cholesterol-fed guinea pigs, rabbits and dogs.  相似文献   

10.
The assumption that complex formation between erythrocyte membrane cholesterol and saponins or sapogenins is the cause for their hemolytic activity, was tested by measuring the susceptibility of cholesterol-depleted erythrocytes towards these hemolysins. For some of the hemolysins cholesterol depletion caused inhibition of hemolysis, for others an augmentation. The results suggest that cholesterol does not serve as a specific binding site for these hemolysins.  相似文献   

11.
Galectins are β-galactoside binding lectins with a potential hemolytic role on erythrocyte membrane integrity and permeability. In the present study, goat heart galectin-1 (GHG-1) was purified and investigated for its hemolytic actions on erythrocyte membrane. When exposed to various saccharides, lactose and sucrose provided maximum protection against hemolysis, while glucose and galactose provided lesser protection against hemolysis. GHG-1 agglutinated erythrocytes were found to be significantly hemolyzed in comparison with unagglutinated erythrocytes. A concentration dependent rise in the hemolysis of trypsinized rabbit erythrocytes was observed in the presence of GHG-1. Similarly, a temperature dependent gradual increase in percent hemolysis was observed in GHG-1 agglutinated erythrocytes as compared to negligible hemolysis in unagglutinated cells. The hemolysis of GHG-1 treated erythrocytes showed a sharp rise with the increasing pH up to 7.5 which became constant till pH 9.5. The extent of erythrocyte hemolysis increased with the increase in the incubation period, with maximum hemolysis after 5 h of incubation. The results of this study establish the ability of galectins as a potential hemolytic agent of erythrocyte membrane, which in turn opens an interesting avenue in the field of proteomics and glycobiology.  相似文献   

12.
Tamoxifen (TAM), the antiestrogenic drug most widely prescribed in the chemotherapy of breast cancer, induces changes in normal discoid shape of erythrocytes and hemolytic anemia. This work evaluates the effects of TAM on isolated human erythrocytes, attempting to identify the underlying mechanisms on TAM-induced hemolytic anemia and the involvement of biomembranes in its cytostatic action mechanisms. TAM induces hemolysis of erythrocytes as a function of concentration. The extension of hemolysis is variable with erythrocyte samples, but 12.5 microM TAM induces total hemolysis of all tested suspensions. Despite inducing extensive erythrocyte lysis, TAM does not shift the osmotic fragility curves of erythrocytes. The hemolytic effect of TAM is prevented by low concentrations of alpha-tocopherol (alpha-T) and alpha-tocopherol acetate (alpha-TAc) (inactivated functional hydroxyl) indicating that TAM-induced hemolysis is not related to oxidative membrane damage. This was further evidenced by absence of oxygen consumption and hemoglobin oxidation both determined in parallel with TAM-induced hemolysis. Furthermore, it was observed that TAM inhibits the peroxidation of human erythrocytes induced by AAPH, thus ruling out TAM-induced cell oxidative stress. Hemolysis caused by TAM was not preceded by the leakage of K(+) from the cells, also excluding a colloid-osmotic type mechanism of hemolysis, according to the effects on osmotic fragility curves. However, TAM induces release of peripheral proteins of membrane-cytoskeleton and cytosol proteins essentially bound to band 3. Either alpha-T or alpha-TAc increases membrane packing and prevents TAM partition into model membranes. These effects suggest that the protection from hemolysis by tocopherols is related to a decreased TAM incorporation in condensed membranes and the structural damage of the erythrocyte membrane is consequently avoided. Therefore, TAM-induced hemolysis results from a structural perturbation of red cell membrane, leading to changes in the framework of the erythrocyte membrane and its cytoskeleton caused by its high partition in the membrane. These defects explain the abnormal erythrocyte shape and decreased mechanical stability promoted by TAM, resulting in hemolytic anemia. Additionally, since membrane leakage is a final stage of cytotoxicity, the disruption of the structural characteristics of biomembranes by TAM may contribute to the multiple mechanisms of its anticancer action.  相似文献   

13.
We have investigated the effect of the presence of 25 mol percent cholesterol on the interactions of the antimicrobial peptide gramicidin S (GS) with phosphatidylcholine and phosphatidylethanolamine model membrane systems using a variety of methods. Our circular dichroism spectroscopic measurements indicate that the incorporation of cholesterol into egg phosphatidylcholine vesicles has no significant effect on the conformation of the GS molecule but that this peptide resides in a range of intermediate polarity as compared to aqueous solution or an organic solvent. Our Fourier transform infrared spectroscopic measurements confirm these findings and demonstrate that in both cholesterol-containing and cholesterol-free dimyristoylphosphatidylcholine liquid-crystalline bilayers, GS is located in a region of intermediate polarity at the polar--nonpolar interfacial region of the lipid bilayer. However, GS appears to be located in a more polar environment nearer the bilayer surface when cholesterol is present. Our (31)P-nuclear magnetic resonance studies demonstrate that the presence of cholesterol markedly reduces the tendency of GS to induce the formation of inverted nonlamellar phases in model membranes composed of an unsaturated phosphatidylethanolamine. Finally, fluorescence dye leakage experiments indicate that cholesterol inhibits the GS-induced permeabilization of phosphatidylcholine vesicles. Thus in all respects the presence of cholesterol attenuates but does not abolish the interactions of GS with, and the characteristic effects of GS on, phospholipid bilayers. These findings may explain why it is more potent at disrupting cholesterol-free bacterial than cholesterol-containing eukaryotic membranes while nevertheless disrupting the integrity of the latter at higher peptide concentrations. This additional example of the lipid specificity of GS may aid in the rational design of GS analogs with increased antibacterial but reduced hemolytic activities.  相似文献   

14.
Although Bartonella bacilliformis causes a severe anemia in humans, this study presents the first report of hemolytic activity by B. bacilliformis. The activity was not apparent in culture supernatants but was reliably detected when B. bacilliformis cells were centrifuged onto erythrocytes prior to incubation. Abrogation of hemolytic activity by proteinase K treatment suggested the hemolysin was a Bartonella protein. Even though hemolysis required relatively long incubation times, de novo protein synthesis was not required to produce the protein. A preparation containing factors released by B. bacilliformis, including deformin, a B. bacilliformis protein able to induce pits and invaginations in erythrocyte membranes, had some ability to lyse erythrocytes. However, pre-deformed erythrocytes did not lyse faster or to a greater extent than control erythrocytes after the addition of B. bacilliformis cells. Inhibition of deformation caused by B. bacilliformis cells with the erythrocyte ATPase inhibitor, vanadate, did not affect hemolytic activity. This study suggests hemolytic activity and deforming activity are attributable to different B. bacilliformis proteins.  相似文献   

15.
Cholesterol sulfate is a component of several biological membranes. In erythrocytes, cholesterol sulfate inhibits hypotonic hemolysis, while in sperm, it can decrease fertilization efficiency. We have found cholesterol sulfate to be a potent inhibitor of Sendai virus fusion to both human erythrocyte and liposomal membranes. Cholesterol sulfate also raises the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine as demonstrated by differential scanning calorimetry and 31P nuclear magnetic resonance spectrometry. Although hexagonal phase structures are not readily found in biological membranes, there is a correlation between the effects of membrane additives on bilayer/non-bilayer equilibria and membrane stabilization. It is proposed that the ability of cholesterol sulfate to alter the physical properties of membranes contributes to its stabilization of biological membranes and the inhibition of membrane fusion.  相似文献   

16.
Bordetella pertussis produces a calmodulin-activated adenylate cyclase (AC) that exists in several forms. Only one form of AC, of apparent 200 kDa, is a toxin that penetrates eukaryotic cells and generates uncontrolled levels of intracellular cAMP. Recombination studies in transposon Tn5-insertion mutants of B. pertussis and amino acid sequence homology with alpha-hemolysin of Escherichia coli suggested that AC toxin may also have a hemolytic activity. Here, we demonstrate that only the toxic form of B. pertussis AC possesses hemolytic activity. Immunoblotting of membranes from sheep erythrocytes throughout the process of cell lysis detects the presence and accumulation of only the 200-kDa form of B. pertussis AC. cAMP generation induced by AC toxin in sheep erythrocytes is immediate whereas appearance of hemolysis is delayed by about 1 h and requires a higher level of AC toxin activity. Addition of exogenous calmodulin to sheep erythrocyte incubation medium potentiates the hemolytic activity of AC toxin but blocks cAMP generation. Extracellular Ca2+ at mM concentrations is absolutely required for cAMP generation but not for hemolysis. However, binding of AC toxin to sheep erythrocytes in the absence of exogenous Ca2+ followed by reincubation of cells in a toxin-free buffer containing Ca2+ leads to an immediate rise in intracellular cAMP. Human erythrocytes bind AC toxin and generate cAMP but are resistant to lysis. These results show that binding of AC toxin to erythrocytes can cause both cAMP generation and hemolysis or only one of these depending on conditions applied and cell type used.  相似文献   

17.
The zwitterionic detergent CHAPS, a derivative of the bile salts, is widely used in membrane protein solubilization. It is a “facial” detergent, having a hydrophilic side and a hydrophobic back. The objective of this work is to characterize the interaction of CHAPS with a cell membrane. To this aim, erythrocytes were incubated with a wide range of detergent concentrations in order to determine CHAPS partition behavior, and its effects on membrane lipid order, hemolytic effects, and the solubilization of membrane phospholipids and cholesterol. The results were compared with those obtained with the nonionic detergent Triton X-100. It was found that CHAPS has a low affinity for the erythrocyte membrane (partition coefficient K = 0.06 mM− 1), and at sub-hemolytic concentrations it causes little effect on membrane lipid order. CHAPS hemolysis and phospholipid solubilization are closely correlated. On the other side, binding of Triton X-100 disorders the membrane at all levels, and has independent mechanisms for hemolysis and solubilization. Differential behavior was observed in the solubilization of phospholipids and cholesterol. Thus, the detergent resistant membranes (DRM) obtained with the two detergents will have different composition. The behaviors of the two detergents are related to the differences in their molecular structures, suggesting that CHAPS does not penetrate the lipid bilayer but binds in a flat position on the erythrocyte surface, both in intact and cholesterol depleted erythrocytes. A relevant result for Triton X-100 is that hemolysis is not directly correlated with the solubilization of membrane lipids, as it is usually assumed.  相似文献   

18.
The hemolytic activity of Vibrio vulnificus hemolysin (VVH) against erythrocytes from several animal species (sheep, horse, cow, rabbit, chicken) was investigated. VVH was active against erythrocytes from all species, but the amount of VVH causing 50% hemolysis under identical conditions (hemolytic susceptibility to VVH) differed. The degree of 125I-labeled VVH (125I-VVH) binding to each erythrocyte species correlated with the susceptibility of the cells to hemolysis. However, marked differences in the binding ability of 125I-VVH were not observed against liposomes constructed with lipids from each erythrocyte membrane. On the other hand, release of hemoglobin (Hb) differed for each of the erythrocyte species despite administration of approximately the same hemolytic VVH concentration to each species. Furthermore, under hypotonic conditions, the stability of each erythrocyte species varied markedly; the more susceptible the erythrocyte to VVH, the more unstable it was under such conditions. These results, therefore, suggest that the susceptibility of erythrocytes to VVH may be closely associated with the binding ability of VVH and erythrocyte membrane stability.  相似文献   

19.
The hemolytic activity of the cell-free culture supernatant of Anabaena variabilis OL S1 was investigated using the hemolysis of rabbit erythrocytes as an assay. The culture medium of A. variabilis started to exhibit hemolytic activity at the late exponential growth phase, and maximized at the stationary phase. The hemolytic toxin is heat-stable and can be extracted in dichloromethane. The hemolytic activities under different temperature, light intensity and pH showed a high correlation with the cell densities (r=0.965, 0.951, 0.865, respectively), and the optimum condition is 28~30°C, pH 7.5~8.0, light intensity 120 μmol photons m−2s−1. The addition of 10~20 μg mL−1 chloramphenicol, an inhibitor of protein synthesis, exhibited no marked suppression on the hemolytic activity. The supplement of 1~20 μg mL−1 glycerol increased the hemolytic activity significantly, suggesting that synthesis of hemolysin was dependent on carbohydrate and lipid metabolism. The spectrum of erythrocyte sensitivity to the hemolysin indicated that rabbit erythrocytes were more sensitive to the hemolysin than were rat and human erythrocytes. Goldfish and cat erythrocytes were, however, insensitive to the hemolytic toxin of A. variabilis.  相似文献   

20.
Transbilayer movement of cholesterol in the human erythrocyte membrane   总被引:3,自引:0,他引:3  
The rate of transbilayer movement of cholesterol was measured in intact human erythrocytes. Suspended erythrocytes were incubated briefly with [3H]cholesterol in ethanol at 4 degrees C, or with liposomes containing [3H]cholesterol over 6 hr at 4 degrees C to incorporate the tracer into the outer leaflet of erythrocyte plasma membranes. The erythrocytes were then incubated at 37 degrees C to allow diffusion of cholesterol across the membrane bilayer. Cells were treated briefly with cholesterol oxidase to convert a portion of the outer leaflet cholesterol to cholestenone, and the specific radioactivity of cholestenone was determined over the time of tracer equilibration. The decrease in specific radioactivity of cholestenone reflected transbilayer movement of [3H]cholesterol. The transbilayer movement of cholesterol had a mean half-time of 50 min at 37 degrees C in cells labeled with [3H]cholesterol in ethanol, and 130 min at 37 degrees C in cells labeled with [3H]cholesterol exchanged from liposomes. The cells were shown, by the absence of hemolysis, to remain intact throughout the assay. The presence of 1 mM Mg2+ in the assay buffer was essential to prevent hemolysis of cells treated with cholesterol oxidase perturbed the cells, resulting in an accelerated rate of apparent transbilayer movement. Our data are also consistent with an asymmetric distribution of cholesterol in erythrocyte membranes, with the majority of cholesterol in the inner leaflet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号