首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Under the tropical conditions of East Java, terminal buds of apple burst at any time of the year in response to removal of the subtending leaves. Following two such defoliations, two weeks apart on separate trees, there was a decrease in abscisic acid (ABA), a three-fold increase in gibberellin-like substances (GAs) and only a slight increase in cytokinin-like substances (CKs) in the apex tissue of closed buds. These changes preceded bud opening and the associated increases in fresh and dry weight, and may be causally related to bud burst. In open buds (i.e. young expanding leaves) the concentration of CKs was greater, and the concentrations of ABA and GAs less, than the concentrations in closed buds. As the leaves expanded, ABA increased and GAs and CKs decreased in concentration. The decrease in concentration of GAs and CKs, however, was due to the rise in dry weight of the expanding tissue; the amounts of all three hormones (per apex) increased. During bud burst there was a concurrent decrease in the CKs of subtending stems, suggesting a transfer into the expanding bud tissues. Removal of the old leaves by defoliation may remove the source of ABA and allow the amount of GAs in the apex to rise, bud burst following. Stem CKs may be utilized in the expansion of the new leaves in the bursting buds.  相似文献   

2.
Auto?i p?edkládají výsledky chromatografického stanovení volných aminokyselin a aminokyselin bílkovinných frakcí rozpustných v ethanolu a louhu, a nerozpustných, v květních a vegetativních pupenech dvou r?zně v??i zimě odolných odr?d mandloně Non-plus-ultra a Voch?aberdi, odebraných v r?zn?ch termínech od podzimu do jara. Chromatografické stanovení aminokyselin v pupenech ukázalo :
  1. 1.
    V květních a vegetativních pupenech se projevuje béhem podzimu a zimy dosti dob?e pozorovatelný rozdíl v obsahu a poměru aminokyselin skoro v?ech frakcí. Nejvýrazněj?í rozdíl se projevuje v kvalitativním obrazci a poměru volných aminokyselin a aminokyselin frakcí rozpustnych v ethanolu, slaběji u frakcí rozpustnych v louhu a nerozpustných.  相似文献   

3.
细胞质雄性不育白菜败育过程中激素和多胺含量的变化   总被引:4,自引:2,他引:4  
通过对胞质雄性不育白菜败育过程中叶片和花药组织中IAA、ZRs、GAs、ABA和Put、Spd、Spm含量及IAA/ZRs比值的变化研究,发现IAA、GA、多胺尤其是Spd含量的小足,ZRs、ABA的盈积以及IAA/ZRs比值的失衡导致了白菜雄性不育系小孢子的败育。  相似文献   

4.
Summary Taste buds of rabbit foliate papillae were observed in control, after denervation and during reinnervation by the glossopharyngeal nerve. In control, taste bud cells could be divided into three groups according to their shapes and staining characteristics. Most of the cells were identified as either dark (corresponding to gustatory) or light (corresponding to supporting) cells. However, some cells were encountered which could not readily be placed in either group; they have been termed intermediate cells. Nine to twelve hours after axotomy, wandering cells were observed in many of the taste buds. Thereafter taste buds gradually decreased in size and disappeared, for the most part, by the 14th postoperative day. It was found that dark cells disappeared first, then at a later stage the light cells also disappeared. During reinnervation, dark cells were first to appear about 40 days after the operation and light cells were not seen till about 9 days later.From the observations, it is concluded that the dark cells of the taste bud differentiate from epithelial cells under the influence of nerves and mature into light cells through intermediate cells.  相似文献   

5.
CCC (2-chloroethyl)trimethylammonium chloride applied to plants ofChenopodium rubrum during floral induction led to an increase in the level of endogenous cytokinins in the apical buds. Application of gibberellic acid or indole-3-acetic acid at concentrations reversing the effect of CCC reduced the level of cytokinins. After simultaneous treatment with both CCC and one of the growth substances this reduction was less pronounced. From the comparison bf the present results, as well as of those published in previous papers it follows that in apical buds ofChenopodium rubrum there exists a mutual interaction between gibberellins and cytokinins. Under certain conditions both these groups of hormones may substitute for each other in flowering. IAA seems to affect flowering by regulating the level of both gibberellins and cytokinins.  相似文献   

6.
Control of outgrowth and dormancy in axillary buds.   总被引:1,自引:0,他引:1  
S Shimizu-Sato  H Mori 《Plant physiology》2001,127(4):1405-1413
  相似文献   

7.
Shoot branching is essential in ornamental chrysanthemum production and determines final plant shape and quality. Auxin is associated with apical dominance to indirectly inhibit bud outgrowth. Two non-mutually exclusive models exist for indirect auxin inhibition. Basipetal auxin transport inhibits axillary bud outgrowth by limiting auxin export from buds to stem (canalization model) or by increasing strigolactone levels (second messenger model). Here we analyzed bud outgrowth in treatments with auxin (IAA), strigolactone (GR24) and auxin transport inhibitor (NPA) using a split-plate bioassay with isolated chrysanthemum stem segments. Besides measuring bud length, dividing cell percentage was measured with flow cytometry and RT-qPCR was used to monitor expression levels of genes involved in auxin transport (CmPIN1) and signaling (CmAXR2), bud dormancy (CmBRC1, CmDRM1) and strigolactone biosynthesis (CmMAX1, CmMAX3). Treatments over a 5-day period showed bud outgrowth in the control and inhibition with IAA and IAA?+?GR24. Bud outgrowth in the control coincided with high dividing cell percentage, decreased expression of CmBRC1 and CmDRM1 and increased CmPIN1 expression. Inhibition by IAA and IAA?+?GR24 coincided with low dividing cell percentage and unchanged or increased expressions of CmBRC1, CmDRM1 and CmPIN1. Treatment with GR24 showed restricted bud outgrowth that was counteracted by NPA. This restricted bud outgrowth was still concomitant with a high dividing cell percentage and coincided with decreased expression of dormancy genes. These results indicate incomplete inhibition of bud outgrowth by GR24 treatment and suggest involvement of auxin transport in the mechanism of bud inhibition by strigolactones, supporting the canalization model.  相似文献   

8.
The AA content of the lateral buds at each node position insoybean cv Pb. I increased considerably at the end of a givennumber of SDs starting right from one. This high level of AA,however, declined sharply during their subsequent return toLD and upto 10 preceding SDs it dropped to even lower than thatunder continuous LD. The biosynthesis of AA, therefore, couldnot keep pace with the increase in its utilization during thepost-photoinductive period. With 12 inductive cycles, whichwere adequate to cause flowering, the AA content of the buds,particularly at 13th and 14th node increased considerably andwas the highest at the 13th node which was the first to flowersubsequently. The drifts of AA in the buds at different nodesshowed a surprising degree of conformity with the sequence offlowering at successive nodes. These high values of AA precedingany morphological sign of floral bud initiation and the declinein the AA content of the buds during the post-inductive periodstrongly suggest the participation of AA in the causal mechanismof flowering. The capacity of the tissues for an enhanced rateof biosynthesis of AA under the influence of favourable daylengthsover a period long enough to meet the demands on its utilizationfor the onset of the reproductive phase has been emphasized. (Received June 8, 1970; )  相似文献   

9.
The technique of isopiestic thermocouple psychrometry was used for the analysis of bud transition from dormancy to growth and back in 8-18-day-old pea (Pisum sativum L.) seedlings. We monitored changes in the water (ψw) and osmotic (ψs + m) potentials and also turgor pressure (ψp) in dormant buds and threshold turgor (Y) in growing buds, the latter being one of the cell-wall rheological characteristics. Seedling decapitation resulted in a decrease of Y in the bud, which coincided with the start of its outgrowth. The replacement of terminal shoot with exogenous auxin (IAA or NAA) retarded bud outgrowth and maintained the high level of Y, which argues for the auxin control of this parameter. When growth of the first axillary bud was inhibited by the second one, positioned higher and remained on the plant, the beginning of Y increase preceded visible correlative growth suppression; this makes this rheological index an early marker of bud transition from growth to dormancy. The effects of the terminal shoot part and auxin application on the bud osmotic status differed substantially. In fact, bud transition to dormancy in the presence of the terminal shoot, the main or developing from the second axillary bud, was accompanied by the rise in ψs + m, whereas, in the case of the replacement of the second bud with exogenous auxin, the first bud growth suppression occurred with the decrease in ψs + m. The low value of the bud ψs + m is a factor for creating a considerable gradient of the water potential between the stem and bud supporting water transport to the bud, which was much more active than in plants with a terminal shoot. It seems likely that this is the reason for the absence of complete growth suppression observed by us and other researchers even after application of high auxin concentrations. Immediately after seedling decapitation, ψs + m in the buds reduced; however, this was not the result of trophic metabolite redistribution due to the loss of their active sink because ψs + m reduced also in experiments with complete isolation of the bud releasing from dormancy in the chamber at 100% humidity. Auxin application to the cut surface of decapitated seedlings did not affect the ψs + m decrease. Like decapitation, cotyledon removal resulted in the increase in the bud turgor pressure. However, in this case, water stress did not change the bud osmotic status. Thus, the induction of osmotica accumulation in the bud after the removal of the terminal shoot is evidently related to neither trophic, nor auxin, nor hydraulic signal. The data obtained allowed us to conclude that both components of the bud water potential—ψs + m and Y—play an important role in the control of bud growth at apical dominance. Auxin produced in the shoot apex is involved in the control of Y, whereas the nature of the signal controlling the ψs + m level is unclear.  相似文献   

10.
To examine the role of position-specific differences in cell-cell affinity, recombinant limb buds composed of dissociated and reaggregated cells derived from anterior (A) and posterior (P) limb bud fragments were analyzed. Dissociated anterior and/or posterior cells were differentially labeled, and their behavior was analyzed during recombinant limb bud outgrowth. We find that anterior and posterior cells sort out from one another to form alternating anterior and posterior stripes of cells that extend distally along the proximal-distal axis. These alternating stripes are prominent across the A/P axis in whole-mount preparations of recombinant limb buds after 48 h of outgrowth when the presumptive autopod is dorsal-ventrally flattened and digit rudiments are not evident. After 96 h, when digital and interdigital regions are clearly defined, we find evidence that A/P stripes do not follow obvious anatomical boundaries. The formation of A/P stripes is not inhibited by grafts of ZPA tissue, suggesting that polarizing activity does not influence cell-cell affinity early in limb outgrowth. In vitro studies provide evidence that cell sorting is not dependent on the limb bud ectoderm or the AER; however, cells sort out without organizing into stripes. Gene expression studies using anterior-specific (Alx-4) and posterior-specific (Shh, Bmp-2, and Hoxd-13) marker genes failed to reveal expression domains that corresponded to stripe formation. Control recombinant limb buds composed of anterior, central, or posterior mesenchyme formed digits in a position-specific manner. A/P recombinant limb buds that develop to later stages form digits that are characteristic of central recombinant limbs. These data provide the first definitive evidence of A/P cell sorting during limb outgrowth in vivo and suggest that differential cell affinities play a role in modulating cell behavior during distal outgrowth.  相似文献   

11.
The inhibitive growth-correlative effect of cotyledons of pea seedlings decreases during their ontogenesis till the age of 14 days. This decrease is associated with an increase in the level of endogenous cytokinins on the one hand and a decrease of endogenous IAA on the other. This is in harmony with the fact that the correlative-inhibiting effect of pea cotyledon upon the growth of its axillary bud can be weakened by exogenous cytokinin and amplified by exogenous IAA.  相似文献   

12.
The role of prostaglandins (PGs) in liver injury induced by D-galactosamine was investigated in the rat. The contents of PGD2 and PGF2 alpha in the liver were significantly increased from 3 h and 24 h after the D-galactosamine administration, respectively, but that of PGE2 was not significantly changed. Administration of 16,16-dimethyl PGE2, a long acting derivative of PGE2, or indomethacin, but not 16,16-dimethyl PGF2 alpha, a long acting derivative of PGF2 alpha, significantly depressed the increase in the serum transaminase activities induced by D-galactosamine. The protective effect of indomethacin was not disturbed by the 16, 16-dimethyl PGF2 alpha administration. These results indicate that PGE2 has a cytoprotective effect against the D-galactosamine induced liver injury and suggest that the protective effect of indomethacin is ascribable to its suppression of synthesis of PGs other than PGE2 or PGF2 alpha, e.g., PGD2.  相似文献   

13.
The content of endogenous auxins was examined in apical buds ofChenopodium rubrum plants induced by a photoperiodic cycle of 16h darkness and 8h light followed by a dark period of various duration so as to correspond with either maximal or minimal flowering response in the endogenous rhythm in capacity to flower initiated by the photoperiodic treatment. Apical buds of potentially generative plants contained less auxins than apical buds of plants which remained in the vegetative state. Apical buds from plants treated with kinetin (1. 10-3 M) and therefore remaining in the vegetative state showed an auxin level comparable to that of untreated plants exhibiting minimal flowering response irrespective of the duration of the second dark period. Plants cultivated on a sucrose solution (0.6 M) during the second dark period became generative even at the normal minimum of flowering. The auxin content of the apical buds was low, similarly as in untreated plants induced for a period leading to maximal flowering response. On the other hand, apical buds from plants grown on sucrose solution during a dark period leading to the manifestation of maximal flowering response showed a relatively high auxin content comparable to that found in untreated plants which had obtained a more extended induction by three photoperiodic cycles. The results are discussed with respect to the possible role of endogenous auxins in the regulation of the changes in growth correlations occurring in the shoot apex during photoperiodic induction and in the expression of the competence to flower.  相似文献   

14.
平阴玫瑰花芽分化期叶片内源激素的变化   总被引:13,自引:2,他引:13  
彭桂群  王力华 《植物研究》2006,26(2):206-210
对平阴玫瑰花芽分化期叶片甲醇提取物进行IAA、ZR、GA3、ABA的分离、纯化和测定。结果发现,所测的几种激素均表现出明显的变化规律,其中IAA和GA3在花芽分化期含量逐渐下降,且在分化临界期出现一低峰,而ZR和ABA则完全相反。同时经比较分析得出ABA/GA3, ABA/IAA,ZR/GA3,ZR/IAA也表现明显的变化规律,即比值总体趋势是逐渐提高,且均在分化临界期含量出现一飞跃,显然ABA/GA3,ABA/IAA,ZR/GA3,ZR/IAA在平阴玫瑰的花芽分化过程中起着重要的调控作用,由此推测,增加植物体内的ABA、ZR的含量或降低IAA、GA3的含量,都可以促进玫瑰的花芽分化;反之则抑制其花芽分化。  相似文献   

15.
Summary By use of lettuce-hypocotyl and wheat-coleoptile bioassay, the presence of both gibberellin (GA)-like and abscisic-acid(ABA)-like components in acidic ethyl-acetate extracts of fully expanded nasturtium (Tropaeolum majus) leaves has been shown. During senescence of detached leaves there was a progressive decline in GA-like components and an increase in ABA-like components. Pretreatment of detached leaves with GA3 or kinetin prevented changes in the levels of endogenous growth regulators and delayed senescence. The observations provide experimental verification for the concept that senescence is associated with changes in endogenous growth regulators.  相似文献   

16.
The contents of indole-3-acetic acid (IAA), gibberellins (GAs), abscisic acid (ABA), and cytokinins were determined in ovules of normal cotton (Tm-1) and a kind of fiber differentiation mutant (Xin) before and after flowering by enzyme-linked immunosorbent assays. It was found that 24 h before flowering, a peak of IAA content was observed in ovules of Tm-1, whereas in ovules of Xin, a low level of IAA was determined. From –1 day (1 day before flowering) to +3 days (3 days after flowering), GA1+3 levels in ovules of Xin were 40–70% lower than those of Tm-1; GA4+7 levels were very low, and there was no visible difference in GA4+7 content between normal and mutant cotton. The ABA content in ovule of Tm-1 decreased by 70% 3 days after flowering, whereas that of Xin only decreased by 20%. The levels of cytokinins in ovules of Tm-1 decreased after flowering, and those of Xin kept up a steady increase.Abbreviations IAA indole-3-acetic acid - GA gibberellin - ABA abscisic acid - ELISA enzyme-linked immunosorbent assay - FW fresh weight - PBS phosphate-buffered saline - iPA isopentenyladenosine - ZR zeatin riboside - DHZR dihydrozeatin riboside - CTK cytokinin  相似文献   

17.
Summary The photosynthetic activity of leafless twigs and buds of Fagus sylvatica was determined by in vivo chlorophyll fluorescence from November to May. Measurements were made on the day of sampling, and during exposure to warm temperatures until reactivation was attained. Under the same conditions, bud development and growth were forced by exposure of cut twigs to 25/18° C at long-day conditions, and bud swelling and bud burst were monitored. Winter inactivation of photosynthesis results in a reduction of the photochemical efficiency of PS II, as indicated by lowering of FV/FM, from January through March. The greatest reduction is in cortical chlorenchyma, the least in folded leaflets and primordia of buds. Restoration of photosynthetic activity, brought about by warming, needed 3–4 weeks in cortex and 1–2 weeks in buds during the coldest period of winter. Frequency distributions based on three types of chlorophyll fluorescence transients, defined by quantitative fluorescence parameters, have proved to be a valuable method for a differentiated expression of the unequal functional activation states of parallel samples. The seasonal course of winter inactivation of photosynthesis did not correspond entirely with the depth of bud dormancy as revealed by the forcing treatments; inactivation of photosynthesis may be more closely synchronized with changes in frost hardiness; possible causes are discussed. We suggest, therefore, that a distinction should be made between inactivation of metabolic processes and depth of dormancy, even though these processes are inherently interrelated.Dedicated to Professor Otto Härtel on the occasion of his 80th birthday  相似文献   

18.
兰州百合鳞茎发育及低温解除休眠过程中内源激素的变化   总被引:2,自引:0,他引:2  
以兰州百合为试材,研究了鳞茎发育过程中以及2、6、10℃条件下保湿贮藏101 d内母鳞茎与新鳞茎中内源激素的变化。结果表明:鳞茎发育过程中内源ABA含量以及母鳞茎的GA3与ZR含量增加,而内源IAA含量以及新鳞茎的GA3与ZR含量下降。低温贮藏期间,母鳞茎与新鳞茎的GA3、IAA含量均有升高过程,而ABA含量呈下降趋势;新鳞茎的ZR含量呈下降趋势,母鳞茎的ZR含量也有升高过程。低温处理初期的34 d内,内源激素变化最为显著。不同贮藏温度相比较,ABA含量差异不大,GA3含量随温度升高而下降。在富含淀粉的新鳞茎中,GA3和ABA表现出极显著的负相关关系,而在淀粉含量较低的母鳞茎中GA3和ABA无相关性。通径分析结果表明,母鳞茎与新鳞茎的物质代谢机制不同,母鳞茎的物质变化受内源GA3的调控,新鳞茎主要是ABA作用的结果。  相似文献   

19.
The presence of polygalacturonase and its correlation with the formation of lateral roots in leek (Allium porrum L.) seedlings have been investigated. During root growth, a steady increase in polygalacturonase activity was associated with that of the lateral root primordia. Fractionation of root extract by fast protein liquid chromatography resolved at least two polygalacturonase isoforms. One of the isoforms, a 75-kdalton protein, strongly reacted on Western blots probed with a polyclonal antibody raised against tomato polygalacturonase. It also reacted with both polyclonal and monoclonal antisera raised against Fusarium moniliforme polygalacturonase. In situ localization with these three antibodies showed that polygalacturonase was present over the meristems of lateral root primordia. Antibodies against pectins (Knox et al. 1990, Planta 181, 512–521) detected large amounts of pectic material filling the area between the apex of the primordium and the mother root tissues. We suggest that a polygalacturonase plays an important role in leek root morphogenesis, particularly during lateral root outgrowth.Abbreviations FPLC fast protein liquid chromatography - RGU one unit of polygalacturonase activity - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis The Authors are grateful to Dr. Dean Della Penna (Department of Vegetable Crops, University of California, Davis, Calif., USA) for generously providing the polyclonal antibody raised against the tomato polygalacturonase. This research was supported by National Research of Italy, Special project RAISA, Subproject N2, N360.  相似文献   

20.
Decapitation of the stem in one-week-old pea seedlings below the first node causes a rapid outgrowth of the two cotyledonary buds. One of them soon becomes dominant, while the other one is inhibited, but can be released from inhibition by cutting off the dominant bud. The level of endogenous auxins and cytokinins was determined in dominant and inhibited buds, as well as in released buds at different time intervals after deinhibition. It was found that the inhibited buds contained very little acidic, ether soluble auxins, a high level of tryptophan and also a high level of cytokinins, in comparison with dominant buds. When the inhibited buda were released from inhibition, their auxin content rose, while that of tryptophan and cytokinins decreased, reaching the level found in dominant buds within six days. Specific changes in content of two undetermined auxin-like substances were found in released buds during de-inhibition. These results are discussed in relation to the current views on the regulation of apical dominance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号