首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Previous studies have shown that UV-B could affect pollen germination and tube growth. However, the mechanism of response of pollen to UV-B has not been clear. The purpose of this study was to investigate the role of hydrogen peroxide (H2O2) in the UV-B-induced reduction of in vitro pollen germination and tube growth of Paeonia suffruticosa Andr. and Paulownia tomentosa Steud. Exposure of pollen of the two species to 0.4 and 0.8 W m−2 UV-B radiation for 3 h resulted in not only the reduction of pollen germination and tube growth, but also the H2O2 production in pollen grain and tube. Also, exogenous H2O2 inhibited pollen germination and tube growth of the two species in a dose-dependence manner. Two scavengers of H2O2, ascorbic acid and catalase, largely prevented not only the H2O2 generation, but also the reduction of pollen germination and tube growth induced by UV-B radiation in the two species. These results indicate that H2O2 is involved in the UV-B-inhibited pollen germination and tube growth.  相似文献   

3.
Jingmei Zhang  Jiaxi Liu  Zukeng Chen  Jinxing Lin   《Flora》2007,202(7):581-588
The calcium inhibitors A23187, EGTA and La3+ inhibit pollen grain germination and growth of pollen tubes of Lilium davidii var. unicolor at different concentrations. Treatment with 10−4 or 10−5 M ionophores A23187 reduced germination rate and resulted in distortion of pollen tube. Addition of 2 or 10 mM of the chelator EGTA disturbed the direction of pollen tube growth and extended the diameter of pollen tube as observed by light and confocal microscopy. The Ca2+-channel blocker lanthanum chloride (La3+) restrained germination or markedly caused transformation of pollen tube. Furthermore, all treatments led to disappearance of any calcium gradient. Calcium distribution in pollen grain and pollen tube was altered as shown by confocal microscopy for each treatment. This indicates that the inhibitors influence pollen development by affecting the calcium gradient which may play a critical role in germination and tube growth. Fourier transform infrared (FTIR) spectra indicated slight increases in contents of amide I and a substantial decrease in the content of aliphatic esters and saturated esters in treated pollen tubes compared with normal pollen tubes. The FTIR analysis confirmed that EGTA and La3+ weakened the accumulation of ester in pollen tubes, which may be associated with an increased content of amide I.  相似文献   

4.
Summary Dynamics of F-actin organization during activation and germination ofPyrus communis (pear) pollen was examined using rhodaminephalloidin. Prior to activation, the rhodamine-phalloidin labelling pattern appeared as circular profiles in the peripheral cytoplasm of the vegetative cell and as coarse granules around the vegetative nucleus. In activated pollen, parallel arrays of cortical F-actin were aligned circumferentially, along the polar axis in non-apertural areas of the pollen grain, and at 45° to 90° to the polar axis beneath the apertures. Some pollen also showed fluorescent granules or fusiform bodies dispersed throughout the cytoplasm, but as the number of such pollen diminished with prolonged incubation, these are being considered as intermediate patterns. In later stages, the filaments became organized as interapertural bundles traversing the three apertures. However, prior to emergence of the pollen tube, labelling became confined to a single aperture. In germinated pollen grains, actin microfilaments are aligned more or less axially with respect to the axis of the developing pollen tube.The granular labelling pattern seen around the vegetative nucleus prior to pollen activation also became clearly filamentous with pollen activation; this filamentous pattern persisted until germination when it was replaced by cables that aligned longitudinally with respect to the emerging tube axis.The results demonstrate that the organization of actin undergoes considerable changes in the period preceding pollen germination and that microfilament polarization is achieved before pollen germination.  相似文献   

5.
  • Boron (B) is essential for normal plant growth, including pollen tube growth. B deficiency influences various physiological and metabolic processes in plants. However, the underlying mechanism of B deficiency in pollen tube growth is not sufficiently understood. In the present research, the influence of B deficiency on apple (Malus domestica) pollen tube growth was studied and the possible regulatory mechanism evaluated.
  • Apple pollen grains were cultured under different concentrations of B. Scanning ion‐selective electrode technique, fluorescence labelling and Fourier‐transform infrared (FTIR) analysis were used to detect calcium ion flux, cytosolic Ca2+ concentration ([Ca2+]cyt), actin filaments and cell wall components of pollen tubes.
  • B deficiency inhibited apple pollen germination and induced retardation of tube growth. B deficiency increased extracellular Ca2+ influx and thus led to increased [Ca2+]cyt in the pollen tube tip. In addition, B deficiency modified actin filament arrangement at the pollen tube apex. B deficiency also altered the deposition of pollen tube wall components. Clear differences were not observed in the distribution patterns of cellulose and callose between control and B deficiency treated pollen tubes. However, B deficiency affected distribution patterns of pectin and arabinogalactan proteins (AGP). Clear ring‐like signals of pectins and AGP on control pollen tubes varied according to B deficiency. B deficiency further decreased acid pectins, esterified pectins and AGP content at the tip of the pollen tube, which were supported by changes in chemical composition of the tube walls.
  • B appears to have an active role in pollen tube growth by affecting [Ca2+]cyt, actin filament assembly and pectin and AGP deposition in the pollen tube. These findings provide valuable information that enhances our current understanding of the mechanism regulating pollen tube growth.
  相似文献   

6.
W. Herth 《Protoplasma》1978,96(3-4):275-282
Summary The effects of the cationophore A 23187 on growing pollen tubes ofLilium longiflorum and on pollen germination were testedin vitro, and measured light microscopically. The ionophore is a very potent inhibitor of pollen tube growth: ionophore contentrations down to 10–7 M stop tip growth. Cytoplasmic streaming is less sensitive: Only with added external Ca2+ and higher concentrations of the ionophore the cytoplasmic streaming is stopped. Pollen germination is less sensitive to ionophore than pollen tube growth at later stages. The ionophore inhibition is partially reversible in a medium containing no added external Ca2+, but is not reversible in a Ca2+-enriched medium. EDTA addition to the medium prevents pollen germination and growth totally. It is hypothesized that the pollen ofLilium longiflorum needs Ca2+ to sustain oriented exocytosis at the pollen tube tip. The ionophore A 23187 seems to interfere with the electrical pulse/Ca2+-orientation mechanism of exocytosis by equilibration of the Ca2+-gradient.  相似文献   

7.
Summary The pattern of RNA synthesis during maturation and germination of pollen grains ofHyoscyamus niger was studied using3H-uridine autoradiography. Incorporation of label during pollen maturation was periodic with peak RNA synthesis occurring in the uninucleate, nonvacuolate pollen grains and in the vegetative cell of the bicellular pollen grains. During the early stages of germination, isotope incorporation occurred predominantly in the nucleus of the vegetative cell with little or no incorporation in the generative cell. With the appearance of the pollen tube, incorporation of3H-uridine in the vegetative cell nucleus decreased and completely disappeared at later stages of germination. No incorporation of isotope was observed in the sperms formed in the pollen tube by the division of the generative cell. From a comparison of the results of this study with those of previous works on RNA synthesis during pollen embryogenesis in cultured anthers ofH. niger, it is concluded that in contrast to embryogenic development, there is no requirement for sustained RNA synthesis by the generative cell nucleus for normal gametophytic development.  相似文献   

8.
Ligeng Ma  Daye Sun 《Planta》1997,202(3):336-340
The effects of anti-calmodulin (CaM) serum, the CaM antagonist W7-agarose, the Ca2+ chelator ethyleneglycol-bis-(β-aminoethyl)-N,N,N′,N′-tetraacetic acid (EGTA) and exogenous pure CaM on pollen germination and tube growth of Hippeastrum rutilum Herb were studied. Pollen germination and tube growth were inhibited or completely stopped by anti-CaM serum in a dose-dependent manner, while the same amount of preimmune serum had no effect on either process. Pollen germination and tube growth were also inhibited or completely stopped by the CaM antagonist W7-agarose and the Ca2+ chelator EGTA. The addition of exogenous pure CaM enhanced pollen germination and tube growth, whereas the same amount of bovine serum albumin had no effect. The inhibitory effects caused by anti-CaM serum, W7-agarose and EGTA-washing could be reversed completely by the addition of exogenous pure CaM. These results indicate that extracellular CaM initiates pollen germination and tube growth, whereas exogenous CaM enhances the above processes, and may provide a novel view for understanding the control of pollen germination and tube growth. Received: 12 December 1996 / Accepted: 15 January 1997  相似文献   

9.
Summary The involvement of exogenous calcium ions in the regulation of pollen tube formation has been investigated in Haemanthus albiflos L. and Oenothera biennis L. by following the changes that occur in pollen germination, tube growth, and 45+Ca2+ uptake and distribution upon application of Verapamil (an inhibitor of calcium channels), lanthanum (a Ca2+ substitute), and ruthenium red (believed to raise the intracellular calcium level). It was found that exogenous Ca2+ takes part in the formation of the calcium gradient present in germinating pollen grains and growing pollen tubes. Ca2+ ions enter the cells through calcium channels. Raising or reducing 45Ca2+ uptake causes disturbances in the germination of the pollen grains and in the growth of the pollen tubes.  相似文献   

10.
Air temperatures of greater than 35 °C are frequently encountered in groundnut‐growing regions, especially in the semi‐arid tropics. Such extreme temperatures are likely to increase in frequency under future predicted climates. High air temperatures result in failure of peg and pod set due to lower pollen viability. The response of pollen germination and pollen tube growth to temperature was quantified in order to identify differences in pollen tolerance to temperature among 21 groundnut genotypes. Plants were grown from sowing to harvest in a poly‐tunnel under an optimum temperature of 28/22 °C (day/night). Pollen was collected at anther dehiscence and was exposed to temperatures from 10° to 47·5 °C at 2·5 °C intervals. The results showed that a modified bilinear model most accurately described the response to temperature of percentage pollen germination and maximum pollen tube length. Genotypes were found to range from most tolerant to most susceptible based on both pollen characters and membrane thermostability. Mean cardinal temperatures (Tmin, Topt and Tmax) averaged over 21 genotypes were 14·1, 30·1 and 43·0 °C for percentage pollen germination and 14·6, 34·4 and 43·4 °C for maximum pollen tube length. The genotypes 55‐437, ICG 1236, TMV 2 and ICGS 11 can be grouped as tolerant to high temperature and genotypes Kadiri 3, ICGV 92116 and ICGV 92118 as susceptible genotypes, based on the cardinal temperatures. The principal component analysis identified maximum percentage pollen germination and pollen tube length of the genotypes, and Tmax for the two processes as the most important pollen parameters in describing a genotypic tolerance to high temperature. The Tmin and Topt for pollen germination and tube growth, rate of pollen tube growth were less predictive in discriminating genotypes for high temperature tolerance. Genotypic differences in heat tolerance‐based on pollen response were poorly related (R2 = 0·334, P = 0·006) to relative injury as determined by membrane thermostability.  相似文献   

11.
The regulation of pollen development and pollen tube growth is a complicated biological process that is crucial for sexual reproduction in flowering plants. Annexins are widely distributed from protists to higher eukaryotes and play multiple roles in numerous cellular events by acting as a putative “linker” between Ca2+ signaling, the actin cytoskeleton and the membrane, which are required for pollen development and pollen tube growth. Our recent report suggested that downregulation of the function of Arabidopsis annexin 5 (Ann5) in transgenic Ann5-RNAi lines caused severely sterile pollen grains. However, little is known about the underlying mechanisms of the function of Ann5 in pollen. This study demonstrated that Ann5 associates with phospholipid membrane and this association is stimulated by Ca2+ in vitro. Brefeldin A (BFA) interferes with endomembrane trafficking and inhibits pollen germination and pollen tube growth. Both pollen germination and pollen tube growth of Ann5-overexpressing plants showed increased resistance to BFA treatment, and this effect was regulated by calcium. Overexpression of Ann5 promoted Ca2+-dependent cytoplasmic streaming in pollen tubes in vivo in response to BFA. Lactrunculin (LatB) significantly prohibited pollen germination and tube growth by binding with high affinity to monomeric actin and preferentially targeting dynamic actin filament arrays and preventing actin polymerization. Overexpression of Ann5 did not affect pollen germination or pollen tube growth in response to LatB compared with wild-type, although Ann5 interacts with actin filaments in a manner similar to some animal annexins. In addition, the sterile pollen phenotype could be only partially rescued by Ann5 mutants at Ca2+-binding sites when compared to the complete recovery by wild-type Ann5. These data demonstrated that Ann5 is involved in pollen development, germination and pollen tube growth through the promotion of endomembrane trafficking modulated by calcium. Our results provide reliable molecular mechanisms that underlie the function of Ann5 in pollen.  相似文献   

12.
Summary Irradiation of dry, mature pollen from Petunia hybrida with near-ultraviolet light from an erythemal-sunlamp gave rise to a repair-like, unscheduled DNA synthesis during the early stages of in vitro germination. Like that brought about by farultraviolet light from a germicidal lamp, this DNA synthesis is enhanced by hydroxyurea added to the germination medium, and reduced by photoreactivating light given after ultraviolet irradiation and before germination begins. It is concluded that pollen, often receiving considerable exposure to sunlight, has, in addition to the protection afforded by the ultraviolet filtering effect of yellow pigments, also the capacity to repair ultraviolet produced changes in DNA, by both photoreactivation and dark repair processes.Because mature Petunia pollen is arrested at the G2 stage of the cell cycle, germinating pollen provides us with a highly synchronous plant tissue with a very low background of DNA replicative synthesis suitable for sensitive measurement of DNA repair synthesis. Thus we have shown that 4-nitroquinoline-1-oxide, at concentrations greater than 0.001 mM, gives rise to an unscheduled DNA synthesis which is enhanced by hydroxyurea. Like that induced by ultraviolet radiation, the chemical mutagen brings about DNA repair only during the early stages of pollen germination, and further it has been possible to show that repair ceases at about the time that generative cell division and pollen tube elongation begins.Boron addition enhances both ultraviolet and 4-nitroquinoline-1-oxide induced repair synthesis. By delaying the chemical mutagen initiation of repair until after germination has begun, we have been able to show that boron is most beneficial during the first hour of germination. It is postulated that this is achieved through an as yet unknown effect of boron on the supply of precursors before pollen cell metabolism is fully committed to pollen tube synthesis later in the germination period.  相似文献   

13.
The metabolism of purine- and pyrimidine nucleotides in pine pollen (Pinus mugo) grown in suspension cultures have been examined. In the ungerminated dehydrated pollen, the presence of ATP has been demonstrated. Incubation of the pollen in a germination medium leads to an exhaustion of the ATP pool, which is restored with the onset of oxygen uptake. By labelling pollen cultures with 32P-orthophosphate, it has been possible to quantitate the nucleotide components of the pollen, and thereby to measure changes in the nucleotide pattern at various growth stages. The most marked changes occur during the initial phase of tube growth when a large increase in the ribonucleoside triphosphate and the sugar nucleotide pools is observed. The contents of ATP and UDP-glucose are further increased if starch synthesis is initiated by the addition of sucrose to the culture medium. In order to determine whether nucleotides in pine pollen are synthesized from de novo pathways or via reutilization pathways, from breakdown products of nucleic acids, pollen was incubated with 14C-labelled precursors of both the de novo and the reutilization pathways. Incorporation experiments established de novo synthesis of ATP and GTP from glycine, and de novo synthesis of CTP and UTP from orotic acid. The operation of pathways for the utilization of exogenous nucleosides was also demonstrated. While uridine, cytidine and adenosine are incorporated into nucleoside triphosphate to a great extent, only minor incorporation of inosine and guanosine is observed. These reutilization pathways might be of importance for the synthesis of nucleotides during tube growth in situ. Addition of inhibitors of glycolysis and oxidative phosphorylation drastically reduces the level of ribonucleoside triphosphates, indicating a rapid turnover of the nucleotide pool.  相似文献   

14.
15.
Plant‐derived smoke stimulates seed germination in numerous plant species. Smoke also has a positive stimulatory effect on pollen germination and pollen tube growth. The range of plant families affected my smoke still needs to be established since the initial study was restricted to only three species from the Amaryllidaceae. The effects of smoke‐water (SW) and the smoke‐derived compounds, karrikinolide (KAR1) and trimethylbutenolide (TMB) on pollen growth characteristics were evaluated in seven different plant families. Smoke‐water (1:1000 and 1:2000 v:v) combined with either Brewbaker and Kwack's (BWK) medium or sucrose and boric acid (SB) medium significantly improved pollen germination and pollen tube growth in Aloe maculata All., Kniphofia uvaria Oken, Lachenalia aloides (L.f.) Engl. var. aloides and Tulbaghia simmleri P. Beauv. Karrikinolide (10?6 and 10?7 m ) treatment significantly improved pollen tube growth in A. maculata, K. uvaria, L. aloides and Nematanthus crassifolius (Schott) Wiehle compared to the controls. BWK or SB medium containing TMB (10?3 m ) produced significantly longer pollen tubes in A. maculata, K. uvaria and N. crassifolius. These results indicate that plant‐derived smoke and the smoke‐isolated compounds may stimulate pollen growth in a wide range of plant species.  相似文献   

16.
One- and two-dimensional electrophoresis of Nicotiana tabacum pollen and pollen tube proteins confirmed that a new protein is preferentially synthesized during pollen germination and tube growth and becomes the most abundant protein in pollen tubes. Analysis of proteins extracted with sodium dodecyl sulfate (SDS) from different pollen tube fractions showed that it is the most abundant non-covalently bound wall protein, characterized by molecular mass of 69 kDa, pI between 7.9 and 8.2, and glycosylation with glucose and/or mannose. Amino acid analysis revealed relative abundance of serine, glutamic acid and glycine, but did not show the presence of hydroxyproline. According to all these characteristics, it cannot be classified as an extensin-like protein. Another prominent wall-bound glycoprotein has a molecular mass of 66 kDa and the same pI as the 69 kDa glycoprotein. These two glycoproteins are similar also in ConA binding, rate of synthesis, and rapid incorporation into pollen tube walls. Their synthesis is strongly reduced by tunicamycin and this inhibition results in the occurrence of new polypeptides in the range of 57–61 kDa. Tunicamycin also inhibited pollen tube growth. At 10 ng ml-1 and 50 ng ml-1 the inhibitor reduced pollen tube mass after 24 h of culture by 30% and 85%, respectively. This indicates that tobacco pollen presents a system highly sensitive to tunicamycin and that cotranslational N-linked glycosylation on the rough endoplasmic reticulum is required for 66 and 69 kDa glycoprotein formation and for pollen tube growth. Although other proteins appear during pollen germination and tube growth, the new proteins occur at low levels and seem to originate through modifications of preexisting polypeptides. In contrast to 69 and 66 kDa proteins, most proteins detected by [14C]amino acid incorporation and fluorography of gels were not revealed by Coomassie blue staining.  相似文献   

17.
The sporophytic type of self-incompatibility exhibited by Ipomoea cairica Sweet (Convolvulaceae) was partially overcome in vitro by treating the pollen and/or stigma with 10–6 to 10–1 M methionine, a precursor of ethylene. The implications of these observations are discussed in relation to other experiments involving use of the ethylene antagonist AgNO3, individually and in combination with methionine and an optimum level of indole-3-acetic acid (10–2 M). The results suggest a role for ethylene (which could also be IAA-induced) in regulating pollen germination and further tube growth in sporophytic self-incompatible systems. A hypothesis on the action of hormones in pollen germination and tube growth in a sporophytic self-incompatible (SSI) system is presented.  相似文献   

18.
With regard to adaptation of green ash (Fraxinus pennsylvanica Marshall) to ecological conditions in Croatia, pollen germination and pollen tube length after 2, 4 and 6 hours were examined in vitro at 10, 15, 20 and 25°C during two years 2001 and 2002. Narrow leaved ash (F. angustifolia Vahl) pollen served as a control in 2002. The year, time and temperature, and the interaction between time and temperature were significant for both germination percentage and pollen tube length. Interactions year × temperature and year × time were significant for pollen tube length only. The highest germination percentage (17.86% in 2001 and 19.40% in 2002) of green ash pollen was at 15°C after 6 hours. The pollen tube length was greatest at 20°C (393.46 μm) in 2001 and 25°C (899.50 μm) in 2002 after 6 hours. Narrow leaved ash pollen had the highest germination percentage (19.22%) at 20°C after 6 hours and was significantly reduced at 25°C. The pollen tube length was greatest at 25°C (518.90 μm) after 6 hours. It can be concluded that green ash pollen has satisfactory germination in ecological conditions in Croatia and that the optimum temperature for pollen germination is higher than 20°C.  相似文献   

19.
20.
Chlorotetracyclin (10-4M) has been used to observe the distribution of membrane-associated calcium during pollen germination of Lilium longiflorum. For comparison, the general membrane distribution has been determined with 4·10-5 M fluorescamine. The pollen grains show a calcium gradient with either weak or strong chlorotetracycline-fluorescence intensity, but always increasing toward the germination colpus. This gradient intensifies during germination, reaching a maximum before the pollen tube emerges. The typical tip-to-base calcium gradient of the tube does not change during growth. Independent of the developmental stage, the pollen grains show a flat fluorescamine-fluorescence gradient with the highest intensity in one half of the grain. Pollen tubes reveal a tip-to-base membrane gradient, independent of their length. As an additional marker for membrane distribution, the distribution of phosphorus, measured by proton-induced X-ray emission in chemically fixed tubes, has been used. A tip-to-base phosphorus gradient, distinct from the calcium gradient measured with the same method, was detected.Abbreviation CTC chlorotetracycline  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号