首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BACKGROUND: DNA primases catalyse the synthesis of the short RNA primers that are required for DNA replication by DNA polymerases. Primases comprise three functional domains: a zinc-binding domain that is responsible for template recognition, a polymerase domain, and a domain that interacts with the replicative helicase, DnaB. RESULTS: We present the crystal structure of the zinc-binding domain of DNA primase from Bacillus stearothermophilus, determined at 1.7 A resolution. This is the first high-resolution structural information about any DNA primase. A model is discussed for the interaction of this domain with the single-stranded DNA template. CONCLUSIONS: The structure of the DNA primase zinc-binding domain confirms that the protein belongs to the zinc ribbon subfamily. Structural comparison with other nucleic acid binding proteins suggests that the beta sheet of primase is likely to be the DNA-binding surface, with conserved residues on this surface being involved in the binding and recognition of DNA.  相似文献   

2.
We describe the first lipase structure from a thermophilic organism. It shares less than 20% amino acid sequence identity with other lipases for which there are crystal structures, and shows significant insertions compared with the typical alpha/beta hydrolase canonical fold. The structure contains a zinc-binding site which is unique among all lipases with known structures, and which may play a role in enhancing thermal stability. Zinc binding is mediated by two histidine and two aspartic acid residues. These residues are present in comparable positions in the sequences of certain lipases for which there is as yet no crystal structural information, such as those from Staphylococcal species and Arabidopsis thaliana. The structure of Bacillus stearothermophilus P1 lipase provides a template for other thermostable lipases, and offers insight into mechanisms used to enhance thermal stability which may be of commercial value in engineering lipases for industrial uses.  相似文献   

3.
The moderate thermophilic bacterium Bacillus stearothermophilus P1 expresses a thermostable lipase that was active and stable at the high temperature. Based on secondary structure predictions and secondary structure-driven multiple sequence alignment with the homologous lipases of known three-dimensional (3-D) structure, we constructed the 3-D structure model of this enzyme and the model reveals the topological organization of the fold, corroborating our predictions. We hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and identified Ser-113, Asp-317, and His-358 as the putative members of the catalytic triad that are located close to each other at hydrogen bond distances. In addition, the strongly inhibited enzyme by 10 mM PMSF and 1-hexadecanesulfonyl chloride was indicated that it contains a serine residue which plays a key role in the catalytic mechanism. It was also confirmed by site-directed mutagenesis that mutated Ser-113, Asp-317, and His-358 to Ala and the activity of the mutant enzyme was drastically reduced.  相似文献   

4.
Choi WC  Kim MH  Ro HS  Ryu SR  Oh TK  Lee JK 《FEBS letters》2005,579(16):3461-3466
Lipase L1 from Geobacillus stearothermophilus L1 contains an unusual extra domain, making a tight intramolecular interaction with the main catalytic domain through a Zn2+-binding coordination. To elucidate the role of the Zn2+, we disrupted the Zn2+-binding site by mutating the zinc-ligand residues (H87A, D61A/H87A, and D61A/H81A/H87A/D238A). The activity vs. temperature profiles of the mutant enzymes showed that the disruption of the Zn2+-binding site resulted in a notable decrease in the optimal temperature for maximal activity from 60 to 45-50 degrees C. The mutations also abolished the Zn2+-induced thermal stabilization. The wild-type enzyme revealed a 34.6-fold increase in stabilization with the addition of Zn2+ at 60 degrees C, whereas the mutant enzymes exhibited no response to Zn2+. Additional circular dichroism spectroscopy studies also confirmed the structural stabilizing role of Zn2+ on lipase L1 at elevated temperatures.  相似文献   

5.
An expression library was generated from a partial NcoI and HindIII digest of genomic DNA from the thermophilic bacterium, Bacillus stearothermophilus P1. The DNA fragments were cloned into the expression vector pQE-60 and transformed into Escherichia coli M15[EP4]. Sequence analysis of a lipase gene showed an open reading frame of 1254 nucleotides coding a 29-amino-acid signal sequence and a mature sequence of 388 amino acids. The expressed lipase was isolated and purified to homogeneity in a single chromatographic step. The molecular mass of the lipase was determined to be approximately 43 kDa by SDS-PAGE and mass spectrometry. The purified lipase had an optimum pH of 8.5 and showed maximal activity at 55 degrees C. It was highly stable in the temperature range of 30-65 degrees C. The highest activity was found with p-nitrophenyl ester-caprate as the synthetic substrate and tricaprylin as the triacylglycerol. Its activity was strongly inhibited by 10 mM phenylmethanesulfonyl fluoride and 1-hexadecanesulfonyl chloride, indicating that it contains a serine residue which plays a key role in the catalytic mechanism. In addition, it was stable for 1 h at 37 degrees C in 0.1% Chaps and Triton X-100.  相似文献   

6.
7.
T Kuriki  H Takata  S Okada    T Imanaka 《Journal of bacteriology》1991,173(19):6147-6152
The active center of the neopullulanase from Bacillus stearothermophilus was analyzed by means of site-directed mutagenesis. The amino acid residues located in the active center of the neopullulanase were tentatively identified according to a molecular model of Taka-amylase A and homology analysis of the amino acid sequences of neopullulanse, Taka-amylase A, and other amylolytic enzymes. When amino acid residues Glu and Asp, corresponding to the putative catalytic sites, were replaced by the oppositely charged (His) or noncharged (Gln or Asn) amino acid residue, neopullulanase activities toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages disappeared. When the amino acids corresponding to the putative substrate-binding sites were replaced, the specificities of the mutated neopullulanases toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages were obviously different from that of the wild-type enzyme. This finding proves that one active center of neopullulanase participated in the dual activity toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages. Pullulan is a linear glucan of maltotriosyl units linked through alpha-(1----6)-glucosidic linkages. The production ratio of panose from pullulan was significantly increased by using the mutated neopullulanase which exhibited higher specificity toward the alpha-(1----4)-glucosidic linkage. In contrast, the production ratio of panose was obviously decreased by using the mutated neopullulanse which exhibited higher specificity toward the alpha-(1----6)-glucosidic linkage.  相似文献   

8.
The dnaG gene encoding DNA primase has been isolated from chromosomal DNA of Bacillus stearothermophilus and its entire nucleotide sequence determined. The deduced amino acid sequence comprised 597 amino acid residues and the molecular mass was calculated to be 67068 Da. B. stearothermophilus primase was overexpressed in Escherichia coli and purified to homogeneity. The N-terminal 12 kDa zinc-binding domain has been crystallized. The crystals are of the monoclinic space group P21 with cell dimensions a=36 A, b=59 A, c=46 A, beta=91.8 degrees and diffract to 1.7 A resolution.  相似文献   

9.
One of the obligate thermophilic bacteria, Bacillus stearothermophilus, was unable to grow at temperatures below 35° C. About 80% of the population in the bacterial culture died at the temperatures, and the same extent of loss in either of the activities of oxygen consumption or synthesis of protein or nucleic acid of the organisms was observed. With the progress of death of the organisms, reduced nicotinamide-adenine dinucleotide came to be oxidized by the organisms, enzymes such as fructose-1,6-diphosphate aldolase, when the organisms were washed with phosphate buffer, were leaked out of the organisms, and an increasing amount of ribonucleoprotein was released into the culture medium. The change of the membrane state was then suggested to be one of the possible causes for the death of the organisms at the temperatures.  相似文献   

10.
The structural gene for a thermostable α-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more α-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the α-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the α-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80°C for 60 min.  相似文献   

11.
Although the branching enzyme (EC 2.4.1.18) is a member of the alpha-amylase family, the characteristics are not understood. The thermostable branching enzyme gene from Bacillus stearothermophilus TRBE14 was cloned and expressed in Escherichia coli. The branching enzyme was purified to homogeneity, and various enzymatic properties were analyzed by our improved assay method. About 80% of activity was retained when the enzyme was heated at 60 degrees C for 30 min, and the optimum temperature for activity was around 50 degrees C. The enzyme was stable in the range of pH 7.5 to 9.5, and the optimum pH was 7.5. The nucleotide sequence of the gene was determined, and the active center of the enzyme was analyzed by means of site-directed mutagenesis. The catalytic residues were tentatively identified as two Asp residues and a Glu residue by comparison of the amino acid sequences of various branching enzymes from different sources and enzymes of the alpha-amylase family. When the Asp residues and Glu were replaced by Asn and Gln, respectively, the branching enzyme activities disappeared. The results suggested that these three residues are the catalytic residues and that the catalytic mechanism of the branching enzyme is basically identical to that of alpha-amylase. On the basis of these results, four conserved regions including catalytic residues and most of the substrate-binding residues of various branching enzymes are proposed.  相似文献   

12.
S R St?hl 《Plasmid》1991,26(2):94-107
Obligately thermophilic strains of Bacillus stearothermophilus were screened for the presence of plasmids by agarose gel electrophoresis. All strains in our collection contained large plasmids (20 x 10(6)-80 x 10(6)) and were divided into four groups with respect to their plasmid pattern and production of bacteriocins. The major plasmid species were designated pSE407 (38.7 x 10(6)), pSE409 (29.0 x 10(6)), pSE411 (21.5 x 10(6)), and pSE410 (23.5 x 10(6)). Their physical endonuclease maps were constructed, and by Southern blots and hybridizations it was shown that these plasmids were related. From curing experiments and electrotransformations (electroporations) we conclude that pSE407, pSE410, and pSE411 code for temperature resistance. In addition pSE410 codes for bacteriocin production and resistance. Plasmid pSE409 probably also codes for bacteriocin production and resistance.  相似文献   

13.
The structural gene for a thermostable alpha-amylase from Bacillus stearothermophilus was cloned in plasmids pTB90 and pTB53. It was expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about fivefold more alpha-amylase (20.9 U/mg of dry cells) than did the wild-type strain of B. stearothermophilus. Some properties of the alpha-amylases that were purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant differences were observed among the enzyme properties despite the difference in host cells. It was found that the alpha-amylase, with a molecular weight of 53,000, retained about 60% of its activity even after treatment at 80 degrees C for 60 min.  相似文献   

14.
15.
After transforming host cells of Bacillus stearothermophilus CU21 with a recombinant plasmid pLP11 that harbored constitutive penicillinase genes of B. licheniformis CO1, both the stability of the plasmid and specific rate of penicillinase production were studied. The temperature at which the plasmid could be kept in a stable fashion in the transformant of B. stearothermophilus CU21 (pLP11) ranged nearly from 44 to 50 degrees C, irrespective of batch and continuous cultures. Continuous and steady-state cultures of the transformant could only be realized within this narrower temperature range. Indeed, the approximate temperature ranges of growth for the host and transformant were from 40 to 70 degrees C and from 40 to 63 degrees C, respectively. Clearly, the upper limit for the growth temperature of host cells decreased when they were transformed. Kinetic patterns of penicillinase production in continuous culture of the transformant (with plasmid) from 44 to 50 degrees C differed remarkably from that of B. licheniformis CO1 (without plasmid) at 37 degrees C.  相似文献   

16.
The structural gene for a thermostable protease from Bacillus stearothermophilus was cloned in plasmid pTB90. It is expressed in both B. stearothermophilus and Bacillus subtilis. B. stearothermophilus carrying the recombinant plasmid produced about 15-fold more protease (310 U/mg of cell dry weight) than did the wild-type strain of B. stearothermophilus. Some properties of the proteases that have been purified from the transformants of B. stearothermophilus and B. subtilis were examined. No significant difference was observed among the enzyme properties studied here despite the difference in host cells. We found that the protease, neutral in pH characteristics and with a molecular weight of 36,000, retained about 80% of its activity even after treatment of 65 degrees C for 30 min.  相似文献   

17.
The thermophilic bacterium Bacillus stearothermophilus P1 is unique in its ability to thrive in extreme environments such as high temperatures or high pH conditions. The study of cold shock response is very interesting and interpreted as a shock response to express the genes involved in synthesis of specific proteins. This study investigated the study of cold shock protein of B. stearothermophilus P1 when the cell culture temperature shifted from 65 degrees C to 37 degrees C and 25 degrees C. Cell growth at 37 degrees C weakly increased in the previous 3 h and then slowly decreased. In contrast, cell growth at 25 degrees C was slowly decreased. The protein contents after temperature downshifts were analyzed by proteomic techniques using protein chip and two-dimensional (2-D) electrophoresis that are highly effective and useful for protein separation and identification. The different proteins after a temperature decrease from 65 degrees C to 37 degrees C and 25 degrees C were expressed on 2-D gel patterns and the cold shock protein was detected in the acidic area with the isoelectric point and molecular mass approximately 4.5 and 7.3 kDa, respectively. The NH(2)-terminal sequence of a major cold shock protein from B. stearothermophilus P1 was MQRGKVKWFNNEKGFGFIEVEGGSD, similar to other cold shock proteins from Bacillus sp. up to 96% identity, but different from the other bacteria with homology less than 80% identity.  相似文献   

18.
19.
Bacillus stearothermophilus was grown at the optimal temperature range (center, 65 degrees C), below it (48 and 55 degrees C), and above it (68 degrees C), in a complex medium with or without 2.5 mM Ca2+. The Ca(2+)-supplement improves growth at sub- and supraoptimal temperatures and extends it to higher temperatures (Jurado et al. (1987) J. Gen. Microbiol. 133, 507-513). The phospholipid composition of cultures obtained in the different growth conditions was studied. Phosphatidylethanolamine was always the major phospholipid (40 to 50% of the total phospholipid). Diphosphatidylglycerol, phosphatidylglycerol, a phosphoglycolipid (pgl) and two minor phospholipids (not identified) were also found in the polar lipid extract. The pgl shows a threefold concentration increase as the growth temperature raises from 48 to 68 degrees C. The thermotropic behavior of membrane lipids was studied by differential scanning calorimetry (DSC) and by means of two fluorescent probes of fluidity, 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(2-pyrenyl)propane (2Py(3)2Py). The results reveal similar features and clearly show a shift of the temperature range of the phase transition to higher values and an increased structural order of the bilayer, as the growth temperature rises from 55 to 68 degrees C, but an opposite effect was observed from 48 to 55 degrees C. Although the Ca(2+)-supplement to the growth medium has no detectable effect, the addition of Ca2+ to the buffer of liposomes (Ca(2+)-liposomes) has a significant ordering effect at all growth temperatures. These liposomes show a shift of the transition range to higher temperatures and the fluorescent parameters (DPH polarization and intramolecular excimerization of the 2Py(3)2Py) detected an order increase of the probes environment, along and above the main phase transition. Spectra of 31P-NMR and polarized light microscopy clearly show that the lipid extracts exhibit, in all the conditions, typical lamellar phase geometry. We concluded that B. stearothermophilus controls the membrane lipid composition to compensate for the destabilizing effect of high temperatures on the membrane organization or to provide an appropriate packing of phospholipid molecules in a stable bilayer. At high temperatures, Ca(2+)-stimulatory effect on growth is presumably due to a direct Ca2+ interaction with the membrane phospholipids, inducing an increased structural order on the bilayer. The increase of the phase transition temperature in the total lipid extracts as compared with the respective polar lipid fractions probably indicates a stabilizing effect of neutral lipids on membrane bilayers.  相似文献   

20.
A thermophilic Bacillus stearothermophilus F1 that produced an extremely thermostable alkaline protease was isolated from decomposed oil palm branches. The isolated protease was purified to homogeneity by heat treatment, ultrafiltration and gel filtration chromatography with a 128-fold increase in specific activity and 75% recovery. The protease, which is a serine-type enzyme, has a relative molecular mass of 33 500 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis but only 20 000 by gel-filtration chromatography. The enzyme was optimally active at pH 9.0 and was stable for 24 h at 70° C and in the pH range from 8.0 to 10.0. It was capable of hydrolysing many soluble and insoluble protein substrates but no esterase activity was detected. The enzyme activity was markedly inhibited by Co2+ and Hg2+, whereas Mg2+, Fe2+, Cu2+, Zn2+ and Sr2+ had little or no inhibitory effect. However, Mn2+ strongly activated the protease activity. The protease exhibited a high degree of thermostability [t 1/2 (85° C) = 4 h, (90° C) = 25 min]. The stability at higher temperatures (85° C and above) was shown to be dependent on the presence of Ca2+. Correspondence to: A. B. Salleh  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号