首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Connexin (Cx) 45.6, an avian counterpart of rodent Cx50, is phosphorylated in vivo, but the sites and function of the phosphorylation have not been elucidated. Our peptide mapping experiments showed that the Ser(363) site in the carboxyl (COOH) terminus of Cx45.6 was phosphorylated and that this site is within casein kinase (CK) II consensus sequence, although showing some similarity to CKI sequence. The peptide containing Ser(363) could be phosphorylated in vitro by CKII, but not by CKI. Furthermore, CKII phosphorylated Cx45.6 in embryonic lens membrane and the fusion protein containing the COOH terminus of Cx45.6. Two-dimensional peptide mapping experiments showed that one of the Cx45.6 peptides phosphorylated in vivo migrated to the same spot as one of those phosphorylated by CKII in vitro. Furthermore, CKII activity could be detected in lens lysates. To assess the function of this phosphorylation event, exogenous wild type and mutant Cx45.6 (Ser(363) --> Ala) were expressed in lens primary cultures by retroviral infection. The mutant Cx45.6 was shown to be more stable having a longer half-life compared with wild type Cx45.6. Together, the evidence suggests that CKII is likely a kinase responsible for the Ser(363) phosphorylation, leading to the destablization and degradation of Cx45.6. The connexin degradation induced by phosphorylation has a broad functional significance in the regulation of gap junctions in vivo.  相似文献   

2.
We show that VP16 is phosphorylated by cellular kinases in vivo and in vitro and map the major sites of phosphorylation to be on serines towards the C-terminus, downstream of position 370 in both cases. Deletion of the acidic activation domain had no effect on phosphorylation, refining the sites to between position 370 and 411. Within VP16, the C-terminal boundary for complex formation with Oct-1 and HCF lies at position 388, and between 370 and 388 lies one serine, at position 375. This is a consensus casein kinase II (CKII) site and, using purified wild-type and mutant proteins, we show that it is the main CKII site in the body of the N-terminal complex-forming region. This site is also phosphorylated in nuclear extracts. Although other sites, mainly Ser411, are also phosphorylated by nuclear kinase(s), the single substitution of Ser375 to alanine abolishes CKII phosphorylation in vitro and virtually eliminates complex formation. This serine lies in a surface-exposed region of VP16 and, although complex formation is disrupted, other activities of the mutant are unaffected. Ser375 is also required in vivo where substitution to alanine abolishes transactivation, while replacement with threonine restores normal levels of activity.  相似文献   

3.
The central region of the N-myc protein has a characteristic amino acid sequence EDTLSDSDDEDD, which is very similar to those of particular domains of adenovirus E1A, human papilloma virus E7, Simian virus 40 large T, c-myc and L-myc proteins. Domains of these three viral oncoproteins have recently been shown to be specific binding sites for the tumor-suppressor gene retinoblastoma protein. We have noted that the sequence of serine followed by a cluster of acidic amino acids is exactly the same as that of a typical substrate of casein kinase II (CKII). Therefore, we investigated whether these nuclear oncoproteins are phosphorylated by CKII. For this purpose, we fused the beta-galactosidase and N-myc genes including this domain and expressed it in Escherichia coli cells. Several mutant N-myc genes, containing single amino acid substitutions in this domain, were also used to produce fused proteins. Strong phosphorylation by CKII was detected with the fused protein of wild-type N-myc. However, no phosphorylation of beta-galactosidase itself was observed and the phosphorylations of fused mutant proteins were low. Another fused N-myc protein containing most of the C-terminal region downstream of this acidic region was not phosphorylated by CKII. Analysis of phosphorylation sites in synthetic peptides of this acidic region identified the major sites phosphorylated by CKII as Ser261 and Ser263. On two-dimensional tryptic mapping of phosphorylated N-myc proteins, major spots of in vitro-labeled and in-vivo-labeled N-myc proteins were detected in the same positions. These results suggest that two serine residues of the acidic central region of the N-myc protein are phosphorylated by CKII in vivo as well as in vitro. The functional significance of this acidic domain is discussed.  相似文献   

4.
The activity of p34cdc2 kinase is regulated in the phases of vertebrate cell cycle by mechanisms of phosphorylation and dephosphorylation. In this paper, we demonstrate that casein kinase II (CKII) phosphorylates p34cdc2 in vivo and in vitro at Ser39 during the G1 phase of HeLa cell division cycle. Human p34cdc2 shows a typical phosphorylation sequence motif site for CKII at Ser39 (ES39EEE). In our experiments, either p34cdc2 expressed and purified from bacteria or p34cdc2 immunoprecipitated from HeLa cells enriched in G1 by elutriation were substrates for in vitro phosphorylation by CKII. Phosphoamino acid analysis, N-chlorosuccinimide mapping, and two-dimensional tryptic mapping of p34cdc2 phosphorylated in vitro were performed to determine the phosphorylation site. A synthetic peptide spanning residues 33-50 of human p34cdc2, including the CKII site, was used to map the site. In addition, phosphorylation at Ser39 also occurs in vivo, since p34cdc2 is phosphorylated during G1 on serine, and its two-dimensional tryptic map shows two phosphopeptides that comigrate exactly with the synthetic peptides used as standard.  相似文献   

5.
NSP5 (NS26), the product of rotavirus gene 11, is a phosphoprotein whose role in the virus replication cycle is unknown. To gain further insight into its function, we obtained monoclonal antibodies against the baculovirus-expressed protein. By immunoprecipitation and immunoblotting experiments, we showed that (i) NSP5 appears in many different phosphorylated forms in rotavirus-infected cells; (ii) immunoprecipitated NSP5 from rotavirus-infected cells can be phosphorylated in vitro by incubation with ATP; (iii) NSP5, produced either by transient transfection of rotavirus gene 11 or by infection by gene 11 recombinant vaccinia virus or baculovirus, can be phosphorylated in vivo and in vitro; (iv) NSP5 expressed in Escherichia coli is phosphorylated in vitro, and thus NSP5 is a potential protein kinase; and (v) NSP5 forms dimers and interacts with NSP2. The intracellular localization of NSP5 in the course of rotavirus infection and after transient expression in COS7 cells has also been investigated. In rotavirus-infected cells, NSP5 is localized in viroplasms, but it is widespread throughout the cytoplasm of transfected COS7 cells. NSP5 produced by transfected COS7 cells did not acquire the multiphosphorylated forms observed in rotavirus-infected COS7 cells. Thus, there is a tight correlation between the localization of NSP5 in the viroplasms and its protein kinase activity in vivo or in vitro. Our results suggest that cellular or viral cofactors are indispensable to fully phosphorylate NSP5 and to reach its intracellular localization.  相似文献   

6.
The phosphoprotein P of Borna disease virus (BDV) is an essential cofactor of the viral RNA-dependent RNA polymerase. It is preferentially phosphorylated at serine residues 26 and 28 by protein kinase C epsilon (PKCepsilon) and, to a lesser extent, at serine residues 70 and 86 by casein kinase II (CKII). To determine whether P phosphorylation is required for viral polymerase activity, we generated P mutants lacking either the PKCepsilon or the CKII phosphate acceptor sites by replacing the corresponding serine residues with alanine (A). Alternatively, these sites were replaced by aspartic acid (D) to mimic phosphorylation. Functional characterization of the various mutants in the BDV minireplicon assay revealed that D substitutions at the CKII sites inhibited the polymerase-supporting activity of P, while A substitutions maintained wild-type activity. Likewise, D substitutions at the PKC sites did not impair the cofactor function of BDV-P, whereas A substitutions at these sites led to increased activity. Interestingly, recombinant viruses could be rescued only when P mutants with modified PKCepsilon sites were used but not when both CKII sites were altered. PKCepsilon mutant viruses showed a reduced capacity to spread in cell culture, while viral RNA and protein expression levels in persistently infected cells were almost normal. Further mutational analyses revealed that substitutions at individual CKII sites were, with the exception of a substitution of A for S86, detrimental for viral rescue. These data demonstrate that, in contrast to other viral P proteins, the cofactor activity of BDV-P is negatively regulated by phosphorylation.  相似文献   

7.
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a 63-kDa phosphoprotein required for viral replication. ICP27 has been shown to contain both stable phosphate groups and phosphate groups that cycle on and off during infection (K. W. Wilcox, A. Kohn, E. Sklyanskaya, and B. Roizman, J. Virol. 33:167-182, 1980). Despite extensive genetic analysis of the ICP27 gene, there is no information available about the sites of the ICP27 molecule that are phosphorylated during viral infection. In this study, we mapped several of the phosphorylation sites of ICP27 following in vivo radiolabeling. Phosphoamino acid analysis showed that serine is the only amino acid that is phosphorylated during infection. Two-dimensional phosphopeptide mapping showed a complex tryptic phosphopeptide pattern with at least four major peptides and several minor peptides. In addition, ICP27 purified from transfected cells yielded a similar phosphopeptide pattern, suggesting that cellular kinases phosphorylate ICP27 during viral infection. In vitro labeling showed that protein kinase A (PKA), PKC, and casein kinase II (CKII) were able to differentially phosphorylate ICP27, resulting in distinct phosphopeptide patterns. The major phosphorylation sites of ICP27 appeared to cluster in the N-terminal portion of the protein, such that a frameshift mutant that encodes amino acids 1 to 163 yielded a phosphopeptide pattern very similar to that seen with the wild-type protein. Further, using small deletion and point mutations in kinase consensus sites, we have elucidated individual serine residues that are phosphorylated in vivo. Specifically, the serine at residue 114 was highly phosphorylated by PKA and the serine residues at positions 16 and 18 serve as targets for CKII phosphorylation in vivo. These kinase consensus site mutants were still capable of complementing the growth of an ICP27-null mutant virus. Interestingly, phosphorylation of the serine at residue 114, which lies within the major nuclear localization signal, appeared to modulate the efficiency of nuclear import of ICP27.  相似文献   

8.
Kenyon TK  Cohen JI  Grose C 《Journal of virology》2002,76(21):10980-10993
Like all alphaherpesviruses, varicella-zoster virus (VZV) infection proceeds by both cell-cell spread and virion production. Virions are enveloped within vacuoles located near the trans-Golgi network (TGN), while in cell-cell spread, surface glycoproteins fuse cells into syncytia. In this report, we delineate a potential role for serine/threonine phosphorylation of the cytoplasmic tail of the predominant VZV glycoprotein, gE, in these processes. The fact that VZV gE (formerly called gpI) is phosphorylated has been documented (E. A. Montalvo and C. Grose, Proc. Natl. Acad. Sci. USA 83:8967-8971, 1986), although respective roles of viral and cellular protein kinases have never been delineated. VZV ORF47 is a viral serine protein kinase that recognized a consensus sequence similar to that of casein kinase II (CKII). During open reading frame 47 (ORF47)-specific in vitro kinase assays, ORF47 phosphorylated four residues in the cytoplasmic tail of VZV gE (S593, S595, T596, and T598), thus modifying the known phosphofurin acidic cluster sorting protein 1 domain. CKII phosphorylated gE predominantly on the two threonine residues. In wild-type-virus-infected cells, where ORF47-mediated phosphorylation predominated, gE endocytosed and relocalized to the TGN. In cells infected with a VZV ORF47-null mutant, internalized VZV gE recycled to the plasma membrane and did not localize to the TGN. The mutant virus also formed larger syncytia than the wild-type virus, linking CKII-mediated gE phosphorylation with increased cell-cell spread. Thus, ORF47 and CKII behaved as "team players" in the phosphorylation of VZV gE. Taken together, the results showed that phosphorylation of VZV gE by ORF47 or CKII determined whether VZV infection proceeded toward a pathway likely involved with either virion production or cell-cell spread.  相似文献   

9.
Vpu as a human-immunodeficiency-virus-type-1-encoded 81-amino-acid integral-membrane protein was expressed in Escherichia coli using the inducible ptrc promoter of an ATG fusion vector. Recombinant Vpu is associated with membranes of E. coli and could be partially solubilized by detergents. Recombinant Vpu was phosphorylated in vitro with purified porcine casein kinase II (CKII) as well as with a CKII-related protein kinase found in cytoplasmic extracts of human and hamster cells. Recombinant Vpu associated with E. coli membranes has turned out to be the best substrate for in vitro phosphorylation with CKII. This reaction can be inhibited by heparin and the ATP analogue 5,6-dichloro-1-(beta-D-ribofuranosyl)benzimidazole (DRB), both known to be potent inhibitors of CKII. Radiolabelled gamma ATP and gamma GTP were used as phosphate donors in vitro phosphorylation of recombinant Vpu. In vivo phosphorylation of Vpu in HIV-1-infected H9 cells was also inhibited by DRB. We concluded therefrom that the Vpu protein is phosphorylated by the ubiquitous CKII in HIV-1-infected human host cells. Two seryl residues in the sequence of Vpu (position 52 and 56) correspond to the consensus S/TXXD/E for CKII. These potential phosphorylation sites are located within a well-conserved dodecapeptide of Vpu (residues 47-58), which is found in different HIV-1 strains as well as in a Vpu-like protein of SIVCPZ. Monoclonal and polyclonal antibodies directed against two different epitopes of Vpu were used for immunoprecipitation of Vpu from HIV-1-infected cells and for detection of Vpu in Western blot analyses. Vpu from HIV-1-infected cells as well as recombinant Vpu expressed in E. coli were determined by SDS/PAGE using 6 M urea to be 9 kDa, which corresponds to the calculated molecular mass of Vpu.  相似文献   

10.
Many eukaryotic and viral regulatory proteins are known to undergo posttranslational modifications including phosphorylation, which plays a critical role in many aspects of cell function. Previous studies from our and other laboratories indicated that the JC virus (JCV) late regulatory protein, agnoprotein, plays an important role in the JCV life cycle. Agnoprotein contains several potential phosphorylation sites, including Ser7, Ser11, and Thr21, which are potential targets for the serine/threonine-specific protein kinase C (PKC). In this study, we investigated the functional significance of these phosphorylation sites for the activity of agnoprotein. In vitro and in vivo kinase assays demonstrated that agnoprotein is a target for phosphorylation by PKC. In addition, each of the PKC phosphorylation sites was mutated to Ala singly and in combination, and the effects of these mutations on the JCV life cycle were analyzed. Although the expression of each mutant agnoprotein was detectable during the infection cycle, virus containing each of these mutations failed to propagate. These results contrast with those obtained with an agnoprotein start codon point (Pt) mutant where agnoprotein expression was completely inhibited. The Pt mutant was viable but replicates less efficiently than the wild type (WT). Moreover, conservative substitutions at PKC phosphorylation sites (Ser7, Ser11, and Thr21 to Asp) resulted in a viable virus, which further demonstrate the importance of these sites on agnoprotein function. Further analysis of the mutants by viral release assay and electron microscopy studies revealed that viral particles were efficiently released from infected cells and morphologically indistinguishable from those of WT but were deficient in DNA content. This may account for the defective propagation of the mutants. These results imply that phosphorylated forms of agnoprotein may have essential functions in the viral life cycle and serve as potential targets for therapeutic interventions to limit JCV propagation and JCV-induced diseases.  相似文献   

11.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.  相似文献   

12.
ERK (extracellular-signal-regulated kinase) 4 [MAPK (mitogen-activated protein kinase) 4] and ERK3 (MAPK6) are atypical MAPKs. One major difference between these proteins and the classical MAPKs is substitution of the conserved T-X-Y motif within the activation loop by a single phospho-acceptor site within an S-E-G motif. In the present study we report that Ser(186) of the S-E-G motif in ERK4 is phosphorylated in vivo. Kinase-dead ERK4 is also phosphorylated on Ser(186), indicating that an ERK4 kinase, rather than autophosphorylation, is responsible. Co-expression of MK5 [MAPK-activated protein kinase 5; also known as PRAK (p38-regulated/activated kinase)], a physiological target of ERK4, increases phosphorylation of Ser(186). This is not dependent on MK5 activity, but does require interaction between ERK4 and MK5 suggesting that MK5 binding either prevents ERK4 dephosphorylation or facilitates ERK4 kinase activity. ERK4 mutants in which Ser(186) is replaced with either an alanine residue or a phospho-mimetic residue (glutamate) are unable to activate MK5 and Ser(186) is also required for cytoplasmic anchoring of MK5. Both defects seem to reflect an impaired ability of the ERK4 mutants to interact with MK5. We find that there are at least two endogenous pools of wild-type ERK4. One form exhibits reduced mobility when analysed using SDS/PAGE. This is due to MK5-dependent phosphorylation and only this retarded ERK4 species is both phosphorylated on Ser(186) and co-immunoprecipitates with wild-type MK5. We conclude that binding between ERK4 and MK5 facilitates phosphorylation of Ser(186) and stabilization of the ERK4-MK5 complex. This results in phosphorylation and activation of MK5, which in turn phosphorylates ERK4 on sites other than Ser(186) resulting in the observed mobility shift.  相似文献   

13.
14.
The E7 protein of human papillomavirus type 16 (HPV16) transforms cultured cells and cooperates with the ras or fos oncogenes in the transformation of primary cells. In this study we have investigated the phosphorylation of E7. When we immunoprecipitated E7 from CaSki cells with a rabbit polyclonal antiserum to a bacterial fusion protein (trpE-E7), we found that E7 was phosphorylated at serine residues contained in five characteristic thermolysin peptides. Immunoprecipitated E7, and fusion proteins harboring the E7 protein from various HPV types, could all be specifically phosphorylated in vitro by the ubiquitous, growth factor-activated casein kinase II (CKII). Comparative peptide mapping showed that the sites of in vivo and in vitro phosphorylation are the same. CKII was shown previously to specifically phosphorylate serine or threonine residues within a cluster of acidic amino acids. The E7 protein contains such a sequence between amino acids 30 and 37. When a synthetic peptide corresponding to this region of E7 was phosphorylated by CKII in vitro, its thermolysin digestion products were the same as those in the phosphorylated E7 protein. We conclude that E7 is phosphorylated in vivo only at serines within the predicted CKII site and that CKII, or a CKII-like enzyme, participates in the reaction. Both the E1A and SV40 large T proteins contain similar CKII consensus sites proximal to the regions required for their associations with the retinoblastoma gene product (p105Rb). Thus it is conceivable that CKII phosphorylation can modulate the interaction between the transforming proteins and the retinoblastoma gene product.  相似文献   

15.
16.
Beta-catenin, a member of the Armadillo repeat protein family, binds directly to the cytoplasmic domain of E-cadherin, linking it via alpha-catenin to the actin cytoskeleton. A 30-amino acid region within the cytoplasmic domain of E-cadherin, conserved among all classical cadherins, has been shown to be essential for beta-catenin binding. This region harbors several putative casein kinase II (CKII) and glycogen synthase kinase-3beta (GSK-3beta) phosphorylation sites and is highly phosphorylated. Here we report that in vitro this region is indeed phosphorylated by CKII and GSK-3beta, which results in an increased binding of beta-catenin to E-cadherin. Additionally, in mouse NIH3T3 fibroblasts expression of E-cadherin with mutations in putative CKII sites resulted in reduced cell-cell contacts. Thus, phosphorylation of the E-cadherin cytoplasmic domain by CKII and GSK-3beta appears to modulate the affinity between beta-catenin and E-cadherin, ultimately modifying the strength of cell-cell adhesion.  相似文献   

17.
MAPK/ERK kinase kinase 3 (MEKK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that functions upstream of the MAP kinases and IkappaB kinase. Phosphorylation is believed to be a critical component for MEKK3-dependent signal transduction, but little is known about the phosphorylation sites of this MAP3K. To address this question, point mutations were introduced in the activation loop (T-loop), substituting alanine for serine or threonine, and the mutants were transfected into HEK293 Epstein-Barr virus nuclear antigen cells. MEKK3-dependent activation of an NF-kappaB reporter gene as well as ERK, JNK, and p38 MAP kinases correlated with a requirement for serine at position 526. Constitutively active mutants of MEKK3, consisting of S526D and S526E, were capable of activating a NF-kappaB luciferase reporter gene as well as ERK and MEK, suggesting that a negative charge at Ser526 was necessary for MEKK3 activity and implicating Ser526 as a phosphorylation site. An antibody was developed that specifically recognized phospho-Ser526 of MEKK3 but did not recognize the S526A point mutant. The catalytically inactive (K391M) mutant of MEKK3 was not phosphorylated at Ser526, indicating that phosphorylation of Ser526 occurs via autophosphorylation. Endogenous MEKK3 was phosphorylated on Ser526 in response to osmotic stress. In addition, phosphorylation of Ser526 was required for MKK6 phosphorylation in vitro, whereas dephosphorylation of Ser526 was mediated by protein phosphatase 2A and sensitive to okadaic acid and sodium fluoride. Finally, the association between MEKK3 and 14-3-3 was dependent on Ser526 and prevented dephosphorylation of Ser526. In summary, Ser526 of MEKK3 is an autophosphorylation site within the T-loop that is regulated by PP2A and 14-3-3 proteins.  相似文献   

18.
19.
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.  相似文献   

20.
The rotavirus nonstructural protein NSP5, a product of the smallest genomic RNA segment, is a phosphoprotein containing O-linked N-acetylglucosamine. We investigated the phosphorylation of NSP5 in monkey MA104 cells infected with simian rotavirus SA11. Immunoprecipitated NSP5 was analyzed with respect to phosphorylation and protein kinase activity. After metabolic labeling of NSP5 with 32Pi, only serine residues were phosphorylated. Separation of tryptic peptides revealed four to six strongly labeled products and several weakly labeled products. Phosphorylation at multiple sites was also shown by two-dimensional polyacrylamide gel electrophoresis (PAGE), where several isoforms of NSP5 with different pIs were identified. Analysis by PAGE of protein reacting with an NSP5-specific antiserum showed major forms at 26 to 28 and 35 kDa. Moreover, there were polypeptides migrating between 28 and 35 kDa. Treatment of the immunoprecipitated material with protein phosphatase 2A shifted the mobilities of the 28- to 35-kDa polypeptides to the 26-kDa position, suggesting that the slower electrophoretic mobility was caused by phosphorylation. Radioactive labeling showed that the 26-kDa form contained additional phosphate groups that were not removed by protein phosphatase 2A. The immunoprecipitated NSP5 possessed protein kinase activity. Incubation with [gamma-32P]ATP resulted in 32P labeling of 28- to 35-kDa NSP5. The distribution of 32P radioactivity between the components of the complex was similar to the phosphorylation in vivo. Assays of the protein kinase activity of a glutathione S-transferase-NSP5 fusion polypeptide expressed in Escherichia coli demonstrated autophosphorylation, suggesting that NSP5 was the active component in the material isolated from infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号