首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Incubation of intact Sendai virions or reconstituted Sendai virus envelopes with phosphatidylcholine/cholesterol liposomes at 37 degrees C results in virus-liposome fusion. Neither the liposome nor the virus content was released from the fusion product, indicating a nonleaky fusion process. Only liposomes possessing virus receptors, namely sialoglycolipids or sialoglycoproteins, became leaky upon interaction with Sendai virions. Fusion between the virus envelopes and phosphatidylcholine/cholesterol liposomes was absolutely dependent upon the presence of intact and active hemagglutinin/neuraminidase and fusion viral envelope glycoproteins. Fusion between Sendai virus envelopes and phosphatidylcholine/cholesterol liposomes lacking virus receptors was evident from the following results. Anti-Sendai virus antibody precipitated radiolabeled liposomes only after they had been incubated with fusogenic Sendai virions. Incubation of N-4-nitrobenzo-2-oxa-1,3-diazole-labeled fusogenic reconstituted Sendai virus particles with phosphatidylcholine/cholesterol liposomes resulted in fluorescence dequenching. Incubation of Tb3+-containing virus envelopes with phosphatidylcholine/cholesterol liposomes loaded with sodium dipicolinate resulted in the formation of the chelation complex Tb3+-dipicolinic acid, as was evident from fluorescence studies. Virus envelopes fuse efficiently also with neuraminidase/Pronase-treated erythrocyte membranes, i.e. virus receptor-depleted erythrocyte membranes, although fusion occurred only under hypotonic conditions.  相似文献   

2.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The fluorescent probes, N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine and lissamine-rhodamine-B-sulfonylphosphatidylethanolamine, were inserted at the appropriate surface density into membranes of reconstituted Sendai virus envelopes, thus allowing transfer of energy between the fluorescent probes. In addition, only the fluorescent molecule N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine was inserted into the viral envelopes, resulting in self-quenching. Incubation of fluorescent, reconstituted Sendai virus envelopes with human erythrocyte ghosts resulted in either reduction in the efficiency of energy transfer or in fluorescence dequenching. No reduction in the efficiency of energy transfer or fluorescence dequenching was observed when fluorescent, reconstituted Sendai virus envelopes were incubated with glutaraldehyde-fixed or desialized human erythrocyte ghosts. Similarly, no change in the fluorescence value was observed when nonfusogenic, reconstituted Sendai virus envelopes were incubated with human erythrocyte ghosts. These results clearly show that reduction in the efficiency of energy transfer or dequenching is due to virus-membrane fusion and not to lipid-lipid exchange. Incubation of reconstituted Sendai virus envelopes, carrying inserted N-4-nitrobenzo-2-oxa-1,3-diazolephosphatidylethanolamine, with cultured cells also resulted in a significant and measurable dequenching. However, incubation of nonfusogenic, fluorescent reconstituted Sendai virus envelopes with hepatoma tissue culture cells also resulted in fluorescent dequenching, the degree of which was about 50% of that observed with fusogenic, fluorescent reconstituted viral envelopes. It is therefore possible that, in addition to virus-membrane fusion, endocytosis of fluorescent viral envelopes results in fluorescence dequenching as well.  相似文献   

4.
Cholesterol sulfate is a component of several biological membranes. In erythrocytes, cholesterol sulfate inhibits hypotonic hemolysis, while in sperm, it can decrease fertilization efficiency. We have found cholesterol sulfate to be a potent inhibitor of Sendai virus fusion to both human erythrocyte and liposomal membranes. Cholesterol sulfate also raises the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine as demonstrated by differential scanning calorimetry and 31P nuclear magnetic resonance spectrometry. Although hexagonal phase structures are not readily found in biological membranes, there is a correlation between the effects of membrane additives on bilayer/non-bilayer equilibria and membrane stabilization. It is proposed that the ability of cholesterol sulfate to alter the physical properties of membranes contributes to its stabilization of biological membranes and the inhibition of membrane fusion.  相似文献   

5.
Sendai virus particles fuse with negatively charged liposomes but not with vesicles made of zwitterionic phospholipids. The liposome-virus fusion process was studied by dilution of the concentration-dependent excimer-forming fluorophore 2-pyrenyldodecanoylphosphatidylcholine contained in the liposomes by the viral lipids. The data were analyzed in the framework of a mass action kinetic model. This provided analytical solutions for the final levels of probe dilution and numerical solutions for the kinetics of the overall fusion process, in terms of rate constants for the liposome-virus adhesion, deadhesion and fusion. This analysis led to the following conclusions: At neutral pH and 37 degrees C, only 15% of the virus particles can fuse with the phospholipid vesicles, although all the virions may aggregate with the liposomes. The rate constants for aggregation, fusion and deadhesion are of the orders of magnitude of 10(7) M-1 X s-1, 10(-3) s-1 and 10(-2), s-1, respectively. The fraction of active virus increases with temperature. At acidic pH, both the fraction of 'fusable' virus and the rate of fusion increase markedly. The optimal pH for fusion is 3-4, where most of the virus particles are active. At higher pH values, an increasing fraction of the virus particles become inactive, probably due to ionization of viral glycoproteins, whereas at pH values below 3.0 the fusion is markedly reduced, most likely due to protonation of the negatively charged vesicles. While only 15% of the virions fuse with the liposomes at pH 7.4 and 37 degrees C, all the liposomes lose their content (Amselem, S., Loyter, A. Lichtenberg, D. and Barenholz, Y. (1985) Biochim. Biophys. Acta 820, 1-10). We therefore propose that release of entrapped solutes is due to liposome-virus aggregation, and not to fusion. Both trypsinization and heat inactivation of the virus particles inhibit not only the fusion process but also the release of carboxyfluorescein. This demonstrates the obligatory role of viral membrane proteins in liposome-virus aggregation. Reconstituted vesicles made of the viral lipid and the hemagglutinin/neuraminidase (HN) glycoprotein fuse with negatively charged liposomes similar to the intact virions. This suggests that the fusion of virions with negatively charged vesicles, unlike the fusion of the virus with biological membranes, requires only the HN and not the fusion glycoprotein.  相似文献   

6.
Y I Henis  O Gutman 《FEBS letters》1988,228(2):281-284
Two independent methods demonstrated that resealed human erythrocyte ghosts undergo Sendai virus-mediated cell-cell fusion to a much lower degree (about 4%) than intact erythrocytes, in spite of similar levels of viral envelope-cell fusion in the two preparations. Fluorescence photobleaching recovery (FPR) showed similar lateral mobilities of the viral glycoproteins following fusion with either ghosts or whole erythrocytes. It is suggested that although viral glycoprotein mobilization in the cell membrane is essential for cell-cell fusion, the target cell properties are also important; in the absence of the required cellular parameters, the mobilization may not be a sufficient condition.  相似文献   

7.
A large number of viral materials are associated with the surface of cells after cell fusion with HVJ at 37 °C for 30 min. This is due to fusion of viral envelopes with the cell membrane. Studies were made on the process from viral adsorption to cell-cell, or cell-viral envelope fusion. On incubation at low temperatures, such as 0–15 °C, no envelope fusion or cell fusion was observed, although there was some interaction between the virus and cells. This interaction resulted in loss of hemadsorption (HA) activity of the cells and partial damage of the ion barrier of the cell membrane. The viral particles seem to come close to the lipid layer of the cell membrane at the low temperatures and to distort the non-flexible membrane structure. On incubation of the cell-virus complex at 37 °C, the cells rapidly became HA-positive and the HA activity was maximal within 5 min. At this stage there was much leakage of ions through the cell membrane. On further incubation the damage to the ion barrier of the cell membrane was repaired completely with completion of cell fusion. This process may be correlated with fusion of viral envelopes with cell membranes and restoration of the cell membrane fused with them.  相似文献   

8.
Latrotoxin-induced fusion of liposomes with bilayer phospholipid membranes   总被引:1,自引:0,他引:1  
Liposomes containing amphotericin B as ionophoric marker were used to investigate the fusion of bilayer phospholipid membranes with liposomes. It was found that latrotoxin isolated from black widow spider venom induced the fusion of liposomes with planar bilayer when liposomes and latrotoxin were administered at opposite sides of the membrane.  相似文献   

9.
We have recently developed a method to quantitate the fusion of reconstituted viral envelopes with cells by fluorescence photobleaching recovery (FPR) (Aroeti, B & Henis, Y I, Biochemistry 25 (1986) 4588). The method is based on the incorporation of non quenching concentrations of the fluorescent lipid probe N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl)phosphatidylethanolamine during the reconstitution of the viral envelopes (the latter probe does not incorporate efficiently into the membrane of native virions). In the present work, we employed the fluorescent dye octadecyl rhodamine B chloride (R18), which can be incorporated directly into the membrane of native enveloped virions, to extend the FPR method to study fusion between native Sendai virions and intact human erythrocytes. The R18 fluorescence was found to be quenched in the viral envelope at the concentration range required for the FPR experiments, possibly due to preferential insertion of the probe into specific domains in the viral membrane. We therefore developed a correction (presented in the Appendix) which takes into account the lower quantum yield of the probe molecules in the membranes of unfused virions in the calculation of the fraction of fused virions from the FPR experiments. The results demonstrate that the method does indeed measure virus-cell fusion, and that the contribution of exchange to the measurements is not significant. The applicability of the method was further verified by the similarity of the results to those obtained independently by fluorescence dequenching measurements, and its ability to measure the distribution of virus-cell fusion within the cell population was demonstrated. These results suggest that the use of R18 can enlarge the scope of the FPR experiments to study the fusion of native virions with cells.  相似文献   

10.
Liposomes containing amphotericin B as ionophoric marker were used to investigate the fusion of bilayer phospholipid membranes with liposomes. It was found that latrotoxin isolated from black widow spider venom induced the fusion of liposomes with planar bilayer when liposomes and latrotoxin were administered at opposite sides of the membrane.  相似文献   

11.
The previously uncharacterized A30L gene of vaccinia virus has orthologs in all vertebrate poxviruses but no recognizable nonpoxvirus homologs or functional motifs. We determined that the A30L gene was regulated by a late promoter and encoded a protein of approximately 9 kDa. Immunoelectron microscopy of infected cells indicated that the A30L protein was associated with viroplasm enclosed by crescent and immature virion membranes. The A30L protein was also present in mature virions and was partially released by treatment with a nonionic detergent and reducing agent, consistent with a location in the matrix between the core and envelope. To determine the role of the A30L protein, we constructed a stringent conditional lethal mutant with an inducible A30L gene. In the absence of inducer, synthesis of viral early and late proteins occurred but the proteolytic processing of certain core proteins was inhibited, suggesting an assembly block. Inhibition of virus maturation was confirmed by electron microscopy. Under nonpermissive conditions, we observed aberrant large, dense, granular masses of viroplasm with clearly defined margins; viral crescent membranes that appeared normal except for their location at a distance from viroplasm; empty immature virions; and an absence of mature virions. The data indicated that the A30L protein is needed for vaccinia virus morphogenesis, specifically the association of the dense viroplasm with viral membranes.  相似文献   

12.
Liposomes constituted with the major sialoglycoprotein of human erythrocytes, glycophorin, were used as models for studies on cell-virus interactions. Liposomes composed of egg yolk phosphatidylcholine, cholesterol and glycophorin were found to interact with the paramyxovirus HVJ to form aggregates. The aggregation process was temperature dependent: it was maximal at 0 degrees C and decreased with increase of the incubation temperature. The activity of viral neuraminidase is also temperature dependent, and it increases with increase of the incubation temperature; release of N-acetylneuraminic acid was negligible at 0 degrees C. Shift-up of the incubation temperature immediately cancelled HVJ-induced agglutination of liposomes. Viruses attached to liposomes seemed to be released into the supernatant when the 'virus-liposome' complex formed at 0 degrees C was incubated at 37 degrees C, possibly as a result of breakdown of the 'binding' site by neuraminidase. The characteristics of the interaction of HVJ with liposomes containing glycophorin appeared to be phenomenologically similar to those of HVJ-cell interaction.  相似文献   

13.
Chlorophyll a and chlorophyll b have been inserted into reconstituted envelopes of Sendai virus particles. Fluorescence measurements indicated a high efficiency of energy transfer between the two chlorophyll molecules due to their close proximity in the viral envelope. Fusion of reconstituted, pigmented virus envelopes with various biological cell membranes at 37 degrees C resulted in a significant decrease in the yield of energy transfer. Reduction in the efficiency of energy transfer was temperature and time dependent, and was also dependent upon the ratio between the reconstituted Sendai virus envelopes (donor) and recipient cells (acceptor). No reduction in the efficiency of energy transfer was observed when non-fusogenic, reconstituted viral envelopes were incubated with cell membranes.  相似文献   

14.
Letter to the editor: Fusion of Sendai viruses with model membranes   总被引:10,自引:0,他引:10  
Sendai virus membranes fuse with liposomes containing phosphatidylcholine, cholesterol, sphingomyelin, phosphatidylethanolamine and gangliosides. After fusion the viral glycoprotein spikes are found in patches in the surface of the liposomes.  相似文献   

15.
Lecithine-cholesterol liposomes containing amphotericin B ionoforic marker were used to study the interaction between liposomes and planar phospholipid membranes. The liposomes were shown to increase the permeability of the planar membrane, which may be explained in terms of membrane fusion. Bivalent cations (Mg2+ and particularly Ca2+), dicetylphosphate producing negatively charged groups on the membrane surface and the n-decane suspension in water promote the fusion, whereas the increase of the cholesterol content in the liposomes prevents it.  相似文献   

16.
O Nussbaum  A Loyter 《FEBS letters》1987,221(1):61-67
Incubation of fluorescently labeled influenza virus particles with living cultured cells such as lymphoma S-49 cells or hepatoma tissue culture cells resulted in a relatively high degree of fluorescence dequenching. Increase in the degree of fluorescence (35-40% fluorescence dequenching) was observed following incubation at pH 5.0 as well as at pH 7.4. On the other hand, incubation of fluorescently labeled influenza virions with erythrocyte ghosts resulted in fluorescence dequenching only upon incubation at pH 5.0. Only a low degree of fluorescence dequenching was observed upon incubation with inactivated unfusogenic influenza or with hemagglutinino-influenza virions. The results of the present work clearly suggest that the fluorescence dequenching observed at pH 5.0 resulted from fusion with the cells' plasma membranes, while that at pH 7.4 was with the membranes of endocytic vacuoles following endocytosis of the virus particles. Our results show that only the fluorescence dequenching observed at pH 7.4--but not that obtained at pH 5.0--was inhibited by lysosomotropic agents such as methylamine and ammonium chloride, or inhibitors of endocytosis such as EDTA and NaN3.  相似文献   

17.
Membrane vesicles containing the Sendai virus hemagglutinin/neuraminidase (HN) glycoprotein were able to induce carboxyfluorescein (CF) release from loaded phosphatidylserine (PS) but not loaded phosphatidylcholine (PC) liposomes. Similarly, fluorescence dequenching was observed only when HN vesicles, bearing self-quenched N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (N-NBD-PE), were incubated with PS but not PC liposomes. Thus, fusion between Sendai virus HN glycoprotein vesicles and the negatively charged PS liposomes is suggested. Induction of CF release and fluorescence dequenching were not observed when Pronase-treated HN vesicles were incubated with the PS liposomes. On the other hand, the fusogenic activity of the HN vesicles was not inhibited by treatment with dithiothreitol (DTT) or phenylmethanesulfonyl fluoride (PMSF), both of which are known to inhibit the Sendai virus fusogenic activity. Fusion was highly dependent on the pH of the medium, being maximal after an incubation of 60-90 s at pH 4.0. Electron microscopy studies showed that incubation at pH 4.0 of the HN vesicles with PS liposomes, both of which are of an average diameter of 150 nm, resulted in the formation of large unilamellar vesicles, the average diameter of which reached 450 nm. The relevance of these observations to the mechanism of liposome-membrane and virus-membrane fusion is discussed.  相似文献   

18.
K Klappe  J Wilschut  S Nir  D Hoekstra 《Biochemistry》1986,25(25):8252-8260
A kinetic and quantitative characterization of the fusion process between Sendai virus and phospholipid vesicles is presented. Membrane fusion was monitored in a direct and continuous manner by employing an assay which relies on the relief of fluorescence self-quenching of the probe octadecylrhodamine B chloride which was located in the viral membrane. Viral fusion activity was strongly dependent on the vesicle lipid composition and was most efficient with vesicles solely consisting of acidic phospholipids, particularly cardiolipin (CL). This result implies that the fusion of viruses with liposomes does not display an absolute requirement for specific membrane receptors. Incorporation of phosphatidylcholine (PC), rather than phosphatidylethanolamine (PE), into CL bilayers strongly inhibited fusion, suggesting that repulsive hydration forces interfere with the close approach of viral and target membrane. Virus-liposome fusion products were capable of fusing with liposomes, but not with virus. In contrast to fusion with erythrocyte membranes, fusion between virus and acidic phospholipid vesicles was triggered immediately, did not strictly depend on viral protein conformation, and did not display a pH optimum around pH 7.5. On the other hand, with vesicles consisting of PC, PE, cholesterol, and the ganglioside GD1a, the virus resembled more closely the fusogenic properties that were seen with erythrocyte target membranes. Upon decreasing the pH below 5.0, the viral fusion activity increased dramatically. With acidic phospholipid vesicles, maximal activity was observed around pH 4.0, while with GD1a-containing zwitterionic vesicles the fusion activity continued to increase with decreasing pH down to values as low as 3.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
B Aroeti  Y I Henis 《Biochemistry》1988,27(15):5654-5661
In order to investigate the requirement for lateral mobilization of viral envelope glycoproteins on the cell surface in the induction of cell-cell fusion, we employed fluorescence photobleaching recovery to study the effect of the fusion temperature on the lateral mobilization of Sendai virus glycoproteins in the human erythrocyte membrane. As the fusion temperature was reduced below 37 degrees C (to 31 or 25 degrees C), the rates of virus-cell fusion, the accompanying hemolysis, and cell-cell fusion were all slowed down. However, the plateau (final level) after the completion of fusion was significantly reduced at lower fusion temperatures only in the case of cell-cell fusion, despite the rather similar final levels of virus-cell fusion. A concomitant decrease as a function of the fusion temperature was observed in the fraction of cell-associated viral glycoproteins that became laterally mobile in the erythrocyte membrane during fusion, and a strict correlation was found between the level of laterally mobile viral glycoproteins in the cell membrane and the final extent of cell-cell fusion. The accompanying reduction in the lateral diffusion coefficients (D) of the viral glycoproteins (1.4-fold at 31 degrees C and 1.9-fold at 25 degrees C, as compared to 37 degrees C) does not appear to determine the final level of cell-cell fusion, since fusing the cells with a higher amount of virions at 25 degrees C increased the final level of cell-cell fusion while D remained constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Segments of viral fusion proteins play an important role in viral fusion. They are defined by a number of criteria, including the sensitivity of this region of the viral fusion protein to loss of function as a consequence of mutation. In addition, small model peptides designed to mimic this segment of viral fusion proteins often have some membrane perturbing activity. The properties of viral fusion peptides are quite varied. Many are found at the amino terminus of viral fusion proteins. As isolated peptides, they have been found to form both α-helical as well as β-structure. In addition, some viruses have internal fusion peptides. Just as there are several structural motifs for viral fusion peptides, there are also several mechanisms by which they accelerate the process of membrane fusion. These include the promotion of negative curvature, lowering the rupture tension of the lipid monolayer, acting as an anchor to join the fusion membranes, transmitting a force to the membrane or imparting energy to the system by other means. It is not likely that the fusion peptide can fulfill all of these diverse roles and future studies will elucidate which of these mechanisms is most important for the action of individual viral fusion peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号