首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA replication is a highly conserved and controlled process. To maintain genome integrity, the DNA must be faithfully duplicated once before chromosomes are segregated to daughter cells. Experimental insults to cells during DNA replication trigger an array of responses to help cells cope with DNA damage and replication stress. This has been coined the DNA damage response. During an unperturbed S-phase, DNA lesions and aberrant DNA structures arise as a consequence of normal DNA replication. Recent data suggest that the same pathways regulating the response to acute DNA damage also operate during normal S-phase to maintain genome integrity in the face of low levels of damage. This review will focus on the role of key proteins and signaling pathways, originally identified by their requirement to maintain genome stability during DNA replication following experimental insults, in the regulation of progression through normal S-phase.  相似文献   

2.
Mammalian G1- and S-phase checkpoints in response to DNA damage   总被引:30,自引:0,他引:30  
The ability to preserve genomic integrity is a fundamental feature of life. Recent findings regarding the molecular basis of the cell-cycle checkpoint responses of mammalian cells to genotoxic stress have converged into a two-wave concept of the G1 checkpoint, and shed light on the so-far elusive intra-S-phase checkpoint. Rapidly operating cascades that target the Cdc25A phosphatase appear central in both the initiation wave of the G1 checkpoint (preceding the p53-mediated maintenance wave) and the transient intra-S-phase response. Multiple links between defects in the G1/S checkpoints, genomic instability and oncogenesis are emerging, as are new challenges and hopes raised by this knowledge.  相似文献   

3.
Cells slow replication in response to DNA damage. This slowing was the first DNA damage checkpoint response discovered and its study led to the discovery of the central checkpoint kinase, Ataxia Telangiectasia Mutated (ATM). Nonetheless, the manner by which the S-phase DNA damage checkpoint slows replication is still unclear. The checkpoint could slow bulk replication by inhibiting replication origin firing or slowing replication fork progression, and both mechanisms appear to be used. However, assays in various systems using different DNA damaging agents have produced conflicting results as to the relative importance of the two mechanisms. Furthermore, although progress has been made in elucidating the mechanism of origin regulation in vertebrates, the mechanism by which forks are slowed remains unknown. We review both past and present efforts towards determining how cells slow replication in response to damage and try to resolve apparent conflicts and discrepancies within the field. We propose that inhibition of origin firing is a global checkpoint mechanism that reduces overall DNA synthesis whenever the checkpoint is activated, whereas slowing of fork progression reflects a local checkpoint mechanism that only affects replisomes as they encounter DNA damage and therefore only affects overall replication rates in cases of high lesion density.  相似文献   

4.
5.
miRNA response to DNA damage   总被引:1,自引:0,他引:1  
Faithful transmission of genetic material in eukaryotic cells requires not only accurate DNA replication and chromosome distribution but also the ability to sense and repair spontaneous and induced DNA damage. To maintain genomic integrity, cells undergo a DNA damage response using a complex network of signaling pathways composed of coordinate sensors, transducers and effectors in cell cycle arrest, apoptosis and DNA repair. Emerging evidence has suggested that miRNAs play a crucial role in regulation of DNA damage response. In this review, we discuss the recent findings on how miRNAs interact with the canonical DNA damage response and how miRNA expression is regulated after DNA damage.  相似文献   

6.
Comment on: Abdallah P, et al. Nat Cell Biol 2009; 11:988-93.  相似文献   

7.
Comment on: Ciznadija D, et al. Cell Cycle 2011; 10:2714-23.  相似文献   

8.
9.
Recent work has achieved the feat of activating the DNA damage checkpoint in the absence of DNA damage, revealing the importance of protein-chromatin associations for the activation, amplification and maintenance of the DNA damage response.  相似文献   

10.
Histone modifications in response to DNA damage   总被引:1,自引:0,他引:1  
  相似文献   

11.
The p53 response to DNA damage   总被引:12,自引:0,他引:12  
Meek DW 《DNA Repair》2004,3(8-9):1049-1056
  相似文献   

12.
Previous studies from our laboratory indicated that expression of the MLH1 DNA mismatch repair (MMR) gene was necessary to restore cytotoxicity and an efficient G(2) arrest in HCT116 human colon cancer cells, as well as Mlh1(-/-) murine embryonic fibroblasts, after treatment with 5-fluoro-2'-deoxyuridine (FdUrd). Here, we show that an identical phenomenon occurred when expression of MSH2, the other major MMR gene, was restored in HEC59 human endometrial carcinoma cells or was present in adenovirus E1A-immortalized Msh2(+/+) (compared with isogenic Msh2(-/-)) murine embryonic stem cells. Because MMR status had little effect on cellular responses (i.e. G(2) arrest and lethality) to the thymidylate synthase inhibitor, Tomudex, and a greater level of [(3)H]FdUrd incorporation into DNA was found in MMR-deficient cells, we concluded that the differential FdUrd cytotoxicity between MMR-competent and MMR-deficient cells was mediated at the level of DNA incorporation. Analyses of ATPase activation suggested that the hMSH2-hMSH6 heterodimer only recognized FdUrd moieties (as the base 5-fluorouracil (FU) in DNA) when mispaired with guanine, but not paired with adenine. Furthermore, analyses of incorporated FdUrd using methyl-CpG-binding domain 4 glycosylase indicated that there was more misincorporated FU:Gua in the DNA of MMR-deficient HCT116 cells. Our data provide the first demonstration that MMR specifically detects FU:Gua (in the first round of DNA replication), signaling a sustained G(2) arrest and lethality.  相似文献   

13.
Human cells are prone to a range of natural environmental stresses and administered agents that damage or modify DNA, resulting in a cellular response typified by either cell death, or a cell cycle arrest, to permit repair of the genomic damage. DNA damage often elicits movement of proteins from one subcellular location to another, and the redistribution of proteins involved in genomic maintenance into distinct nuclear DNA repair foci is well documented. In this review, we discuss the DNA damage-induced trafficking of proteins to and from other distinct subcellular organelles including the nucleolus, mitochondria, Golgi complex and centrosome. The extent of intracellular transport suggests a dynamic and possibly co-ordinated role for protein trafficking in the DNA damage response.  相似文献   

14.
Telomere structure allows cells to distinguish the natural chromosome ends from double-strand breaks (DSBs). However, DNA damage response proteins are intimately involved in telomere metabolism, suggesting that functional telomeres may be recognized as DNA damage during a time window. Here we show by two different systems that short telomeres are recognized as DSBs during the time of their replication, because they induce a transient MRX-dependent DNA damage checkpoint response during their prolonged elongation. The MRX complex, which is recruited at telomeres under these conditions, dissociates from telomeres concomitantly with checkpoint switch off when telomeres reach a new equilibrium length. We also show that MRX recruitment to telomeres is sufficient to activate the checkpoint independently of telomere elongation. We propose that MRX can signal checkpoint activation by binding to short telomeres only when they become competent for elongation. Because full-length telomeres are refractory to MRX binding and the shortest telomeres are elongated of only a few base pairs per generation, this limitation may prevent unscheduled checkpoint activation during an unperturbed S phase.  相似文献   

15.
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   

16.
MCL-1, a pro-survival member of the BCL-2 family, was previously shown to have functions in ATR-dependent Chk1 phosphorylation following DNA damage. To further delineate these functions, we explored possible differences in DNA damage response caused by lack of MCL-1 in mouse embryo fibroblasts (MEFs). As expected, Mcl-1-/- MEFs had delayed Chk1 phosphorylation following etoposide treatment, compared to wild type MEFs. However, their response to hydroxyurea, which causes a G1/S checkpoint response, was not significantly different. In addition, appearance of g-H2AX was delayed in the Mcl-1-/- MEFs treated with etoposide. We next investigated whether MCL-1 is present, together with other DNA damage response proteins, at the sites of DNA damage. Immunoprecipitation of etoposide-treated extracts with anti-MCL-1 antibody showed association of MCL-1 with g-H2AX as well as NBS1. Immunofluorescent staining for MCL-1 further showed increased co-staining of MCL-1 and NBS1 following DNA damage. By using a system that creates DNA double strand breaks at specific sites in the genome, we demonstrated that MCL-1 is recruited directly adjacent to the sites of damage. Finally, in a direct demonstration of the importance of MCL-1 in allowing proper repair of DNA damage, we found that treatment for two brief exposures to etoposide over several days, which mimics the clinical situation of etoposide use, resulted in many more chromosomal abnormalities in the MEFs that lacked MCL-1. Together, these data indicate an important role for MCL-1 in coordinating DNA damage mediated checkpoint response, and have broad implications for the importance of MCL-1 in maintenance of genome integrity.  相似文献   

17.
MCL-1, a pro-survival member of the BCL-2 family, was previously shown to have functions in ATR-dependent Chk1 phosphorylation following DNA damage. To further delineate these functions, we explored possible differences in DNA damage response caused by lack of MCL-1 in mouse embryo fibroblasts (MEFs). As expected, Mcl-1-/- MEFs had delayed Chk1 phosphorylation following etoposide treatment, compared to wild type MEFs. However, their response to hydroxyurea, which causes a G1/S checkpoint response, was not significantly different. In addition, appearance of γ-H2AX was delayed in the Mcl-1-/- MEFs treated with etoposide. We next investigated whether MCL-1 is present, together with other DNA damage response proteins, at the sites of DNA damage. Immunoprecipitation of etoposide-treated extracts with anti-MCL-1 antibody showed association of MCL-1 with γ-H2AX as well as NBS1. Immunofluorescent staining for MCL-1 further showed increased co-staining of MCL-1 and NBS1 following DNA damage. By using a system that creates DNA double strand breaks at specific sites in the genome, we demonstrated that MCL-1 is recruited directly adjacent to the sites of damage. Finally, in a direct demonstration of the importance of MCL-1 in allowing proper repair of DNA damage, we found that treatment for two brief exposures to etoposide, followed by periods of recovery, which mimics the clinical situation of etoposide use, resulted in greater accumulation of chromosomal abnormalities in the MEFs that lacked MCL-1. Together, these data indicate an important role for MCL-1 in coordinating DNA damage mediated checkpoint response, and have broad implications for the importance of MCL-1 in maintenance of genome integrity.Key words: protein complex, DNA repair, checkpoint, G2/M, chromosomes  相似文献   

18.
Replication of the papillomavirus genome is initiated by the assembly of a complex between the viral E1 and E2 proteins at the origin. The E1 helicase is comprised of a C-terminal ATPase/helicase domain, a central domain that binds to the origin, and an N-terminal regulatory region that contains nuclear import and export signals mediating its nucleocytoplasmic shuttling. We previously reported that nuclear accumulation of E1 has a deleterious effect on cellular proliferation which can be prevented by its nuclear export. Here we have shown that nuclear accumulation of E1 from different papillomavirus types blocks cell cycle progression in early S phase and triggers the activation of a DNA damage response (DDR) and of the ATM pathway in a manner that requires both the origin-binding and ATPase activities of E1. Complex formation with E2 reduces the ability of E1 to induce a DDR but does not prevent cell cycle arrest. Transient viral DNA replication still occurs in S-phase-arrested cells but surprisingly is neither affected by nor dependent on induction of a DDR and of the ATM kinase. Finally, we provide evidence that a DDR is also induced in human papillomavirus type 31 (HPV31)-immortalized keratinocytes expressing a mutant E1 protein defective for nuclear export. We propose that nuclear export of E1 prevents cell cycle arrest and the induction of a DDR during the episomal maintenance phase of the viral life cycle and that complex formation with E2 further safeguards undifferentiated cells from undergoing a DDR when E1 is in the nucleus.  相似文献   

19.
20.
Exposure of eukaryotic cells to DNA damaging agents induces gene expression and inhibits cell cycle progression. The first response to damage that has been measured is an increase in protein kinase activity. Several protein kinases are activated in cells exposed to DNA damaging agents, and other kinases that correct damage hypersensitivity mutants have been identified genetically. Current challenges include determining which responses result from damage to DNA and identifying the immediate detectors of damaged DNA that initiate signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号