首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, the membrane-bound hCA IV, the mitochondrial hCA V and the tumour associated, transmembrane hCA IX, with complex anions incorporating fluoride, chloride and cyanide, as well as B(III), Si(IV), P(V), As(V), Al(III), Fe(II), Fe(III), Pd(II), Pt(II), Pt(IV), Cu(I), Ag(I), Au(I) and Nb(V) species has been investigated. Apparently, the most important factors influencing activity of these complexes are the nature of the central metal ion/element, and its charge. Geometry of these compounds appears to be less important, since both linear, tetrahedral, octahedral as well as pentagonal bipyramidal derivatives led to effective inhibitors. However, the five isozymes showed very different affinities for these anion inhibitors. The best hCA I inhibitors were cyanide, dicyanocuprate and dicyanoaurate (K(I)s in the range of 0.5-7.7 microM), whereas the least effective were fluoride and hexafluoroarsenate. The best hCA II inhibitors were cyanide, hexafluoroferrate and tetrachloroplatinate (K(I)s in the range of 0.02-0.51 mM), whereas the most ineffective ones were fluoride, hexafluoroaluminate and chloride. The best hCA IV inhibitors were dicyanocuprate (K(I) of 9.8 microM) and hexacyanoferrate(II) (K(I) of 10.0 microM), whereas the worst ones were tetrafluoroborate and hexafluoroaluminate (K(I)s in the range of 124-126 mM). The most effective hCA V inhibitors were cyanide, heptafluoroniobate and dicyanocuprate (K(I)s in the range of 0.015-0.79 mM), whereas the most ineffective ones were fluoride, chloride and tetrafluoroborate (K(I)s in the range of 143-241 mM). The best hCA IX inhibitors were on the other hand cyanide, heptafluoroniobate and dicyanoargentate (K(I)s in the range of 4 microM-0.33 mM), whereas the worst ones were hexacyanoferrate(III) and hexacyanoferrate(II).  相似文献   

2.
Calmodulin (CaM)-stimulated phosphatase in bovine brain or bovine lung CaM-binding protein fractions were fractionated on a heparin-Sepharose column into three activity peaks, designated in order of column three activity peaks, designated in order of column elution as the brain peak I (BPI), peak II (BPII), and peak III (BPIII) or the lung peak I (LPI), peak II (LPII), and peak III (LPIII) phosphatases, respectively. The pooled individual peak fractions were further purified on a fast protein liquid chromatography Superose 12 column. Analysis of the purified samples by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that they all contained major peptides corresponding to alpha and beta subunits of the brain CaM-stimulated phosphatase. The phosphatases had similar specific activities and were similarly stimulated by Ni2+, Mn2+, Mg2+ + Ca2+, and CaM. They showed differential reactivity on immunotransblots with an alpha subunit-specific monoclonal antibody VJ6, which reacted strongly toward BPI and weakly toward BPIII and LPI, but showed no reactivity toward BPII, LPII, and LPIII. Each of the alpha subunits of the purified phosphatases had a distinct V8 protease and chymotrypsin peptide map. The results suggest that both bovine brain and bovine lung contain multiple CaM-stimulated phosphatase isozymes. The suggestion of three mammalian brain CaM-stimulated phosphatase isozymes is in agreement with the results of recent molecular cloning studies (Kuno, T., Takeda, T., Hirai, M., Ito, A., Mukai, H., and Tanaka, C. (1989) Biochem. Biophys. Res. Commun. 165, 1352-1358; Guerini, D., and Klee, C.B. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 9183-9187; da Cruz e Silva, E. F., and Cohen, P. T. W. (1989) Biochim. Biophys. Acta 1009, 293-296). The successful purification of the individual isozymes may facilitate the elucidation of molecular basis and physiological significance of the isozymes.  相似文献   

3.
The properties of the isozymes of pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) found in unfertilized frog egg have been compared to those found in adult tissues of Rana pipiens. Chromatographic, kinetic, and electrophoretic data indicate that, of the five electrophoretic forms found in egg, the isozyme with the least anodic mobility (isozyme I) is the same molecular species as the only isozyme found in heart, and the egg isozyme with the greatest anodic mobility (isozyme V) is identical to the major isozyme found in liver.The activity of egg isozyme I was markedly inhibited by the antibody to the skeletal muscle enzyme, which has been shown previously to cross-react with the cardiac enzyme, but was unaffected by the antibody to liver isozyme V; the opposite effects were observed with egg isozyme V. The antibody to the skeletal muscle enzyme inhibited egg isozymes II > III > IV whereas the antibody to the liver enzyme gave the reverse inhibitory pattern, e.g., isozyme IV > III > II.In vitro dissociation-reassociation of mixtures of isozyme I and V led to the formation of the other three isozymes. Similar experiments performed individually with either egg isozyme III or IV resulted in the production of predominantly isozymes III, II, and I due to the instability of isozyme V during the hybridization procedure.The above results indicate that isozymes I and V are tetramers of the respective parental subunits and that isozymes II, III, and IV are hybrid molecules with subunit assignments of (I3V1), I2V2), and (I1V3), respectively.  相似文献   

4.
H1 histone of mouse lymphoma L5178Y was fractionated into five subtypes, I-V, by Bio-Rex 70 column chromatography. The rates of synthesis of subtypes III and V were higher than those of I, II, and IV, as determined by the measurement of [3H]lysine incorporation. The degradation of the subtype was estimated assuming first order kinetics; subtypes III and V had half-lives of 18 h and 25 h, respectively, and the three other subtypes all had half-lives of 63 h. The syntheses of these subtypes during the cell cycle were examined using synchronized cultures. The syntheses of subtypes I, II, and IV started at the beginning of S phase, whereas those of III and V started in mid-S phase. The syntheses of III and V were at least 1.5-2 times more rapid than those of I, II, and IV, and their active synthesis was accompanied by their rapid degradation. The five subtypes of H1 were further characterized in relation to phosphorylation. Each showed characteristic differences in its synthetic pattern or phosphorylation, and we concluded that each H1 subtype has its own specific function at least in the process of replication of chromatin.  相似文献   

5.
Rice leaves and seed embryos contain four isozymes of CuZn-superoxidedismutase (SOD) and two isozymes of Mn-SOD. CuZn-SOD I is amajor enzyme in leaves, but not in embryos or etiolated seedlings.CuZn-SODs II,III and IV were found in the embryos but were alsofound as minor isozymes in leaves. CuZn-SODs I, II and IV were purified to homogeneity from riceleaves. CuZn-SODs I and II had similar properties with respectto molecular weight, dimeric structure, absorption spectrumand metal content, but their amino acid compositions differedfrom each other. The absorption spectrum of CuZn-SOD IV wassimilar to that of isozymes I and II, but this enzyme was amonomer with a molecular mass of 1.7 kDa. Antibody against CuZn-SODI from rice did not cross-react with isozymes II and IV. Antibodiesagainst CuZn-SOD from spinach leaves cross-reacted with isozymeI but not with isozymes II, III and IV. By contrast, the antibodiesagaist CuZn-SOD from spinach seeds cross-reacted with isozymesII, III and IV but not with isozyme I. Thus, the isozyme thatis expressed mainly in leaves (CuZn-SOD I) and the isozymesexpressed mainly in non-photosynthetic tissues (CuZn-SODs II,III, IV) are immunologically distinct. (Received October 7, 1988; Accepted January 27, 1989)  相似文献   

6.
Mikola L 《Plant physiology》1986,81(3):823-829
Extracts of resting and germinating (3 days at 20°C) wheat (Triticum aestivum L. cv Ruso) grains rapidly hydrolyzed various benzyloxycarbonyldipeptides (Z-dipeptides) at pH 4 to 6. Similar activities were present in extracts of mature flag leaves. Fractionation by chromatography on CM-cellulose and on Sephadex G-200 showed that the activities in germinating grains were due to five acid carboxypeptidases with different and complementary substrate specificities. The wheat enzymes appeared to correspond to the five acid carboxypeptidases present in germinating barley (L Mikola 1983 Biochim Biophys Acta 747: 241-252). The enzymes were designated wheat carboxypeptidases I to V and their best or most characteristic substrates and approximate molecular weights were: I, Z-Phe-Ala, 120,000; II, Z-Ala-Arg, 120,000; III, Z-Ala-Phe, 40,000; IV, Z-Pro-Ala, 165,000; and V, Z-Pro-Ala, 150,000. Resting grains contained carboxypeptidase II as a series of three isoenzymes and low activities of carboxypeptidases IV and V. During germination the activity of carboxypeptidase II decreased, those of carboxypeptidases IV and V increased, and high activities of carboxypeptidases I and III appeared. The flag leaves contained high activity of carboxypeptidase I and lower activities of carboxypeptidases II, IV, and V, whereas carboxypeptidase III was absent.  相似文献   

7.
The subcellular distribution, size, and activation state of protein kinase C (PKC) were studied after short term exposure of rabbit platelets to a saturating dose of 12-O-tetradecanoylphorbol 13-acetate (TPA). Cytosolic and Nonidet P-40-solubilized particulate extracts prepared from TPA-treated platelets were subjected to analytical column chromatography on Mono Q, hydroxylapatite, and Superose 6/12. PKC activity was assayed according to the ability of the enzyme to phosphorylate (i) histone H1 in the presence of the activators calcium, diacylglycerol, and phosphatidylserine; (ii) histone H1 after proteolytic activation of PKC with trypsin; and (iii) protamine in the absence of calcium and lipid. Within 1 min of TPA treatment of platelets, greater than 95% of the PKC activity was particulate associated, as assessed by all three methods. The particulate PKC activity from 1-min TPA-treated cells eluted from Mono Q with approximately 0.35 M NaCl (peak I), and it was highly dependent upon Ca2+ and lipid for optimal histone H1 phosphorylation. With longer exposure times of platelets to TPA, the disappearance of the Mono Q peak I form of PKC was correlated with the production of new PKC species that were released from Mono Q with approximately 0.4 M NaCl (peak II), approximately 0.5 M NaCl (peak III), and approximately 0.6 M NaCl (peak IV). These last forms of PKC were still lipid activated but exhibited little Ca2+ dependence. The Mono Q peak III form displayed a particularly high level of histone H1 phosphorylating activity in the absence of lipid and Ca2+. All of these forms behaved as approximately 65-kDa proteins on Superose 6/12, but on sodium dodecyl sulfate-polyacrylamide gels, Western blotting with anti-PKC-beta antibodies revealed immunoreactive polypeptides of approximately 79 kDa (Mono Q peaks I, II, and IV) and approximately 100-kDa (Mono Q peak III). Hydroxylapatite column chromatography permitted partial resolution of the Mono Q peaks I and II forms, which were eluted within a concentration range of potassium phosphate (100-150 mM) which was typical of the beta isozyme of PKC. Treatment of the Mono Q peak III and IV PKC forms with alkaline phosphatase resulted in the production of the peak I form, which implicated protein phosphorylation in the interconversion of the various PKC forms.  相似文献   

8.
Two forms (I and II) of phospholipase C, specific for phosphatidyl inositol 4,5-bisphosphate, were resolved from bovine retinal rod outer segment (ROS) cytosol by DEAE-Sepharose column chromatography. The two isozymes showed reproducible differences in their catalytic properties in spite of similar substrate specificity and hydrolyzed specifically inositol 4,5-bisphosphate in a Ca(2+)-dependent fashion. In the presence of deoxycholate (DOC), pH optima were at 6.5 and 7.0 for phospholipase C I and II, respectively. Maximal phosphatidylinositol 4,5-bisphosphate hydrolysis rates were obtained at 10(-4) and 10(-5)M Ca2+ for phospholipase C I and II, respectively. Treatment with cAMP-dependent protein kinase did not alter either isozyme activity. Further purification steps were prevented by the extreme lability of the isozymes.  相似文献   

9.
Three to five isozymes of pancreatic proteinase exist in mice, and they have been designated as bands I, II, III, IV, and V. Identification experiments of these isozymes were carried out in this study; banks I, IV, and V are trypsin, and bands II and III are chymotrypsin. Therefore, it is concluded that Prt-1, controlling band V, is a locus for trypsin and Prt-2, controlling bands II and III, is a locus for chymotrypsin. In addition, a new locus, Prt-3, has been found. At this locus the two allelic genes, Prt-3 a and Prt-3 b , control the low and high tryptic activities of band IV, respectively. Prt-3 is present only in the strain Mol-A. Linkage experimentation has shown that Prt-1 is closely linked to Prt-3.  相似文献   

10.
Structural Proteins of Pichinde Virus   总被引:10,自引:9,他引:1       下载免费PDF全文
Pichinde virus, a member of the arenovirus group, was found to have four polypeptides by polyacrylamide gel electrophoresis. Two components, V(I) and V(II), had molecular weights of about 72,000, whereas V(III) had a molecular weight of 34,000. A minor component, V(IV), had a molecular weight of about 12,000. Glucosamine was incorporated into V(II) and V(III), suggesting that these components were glycopeptides whereas V(I) and V(IV) were polypeptides. Treatment of the virus with Nonidet P-40 removed V(III), but V(I) and V(II) remained associated with the virus nucleic acid. This suggests a functional role of a ribonucleoprotein for V(I) and an envelope glycoprotein for V(III). V(II), the major glycopeptide, could function both as a membrane component and as a nucleoprotein.  相似文献   

11.
The interaction of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, that is, hCA I, II, IV, V, and IX with a small library of phosphonic acids/organic phosphates, including methylphosphonic acid, MPA; phenylphosphonic acid, PPA; N-(phosphonoacetyl)-L-aspartic acid, PALA, methylene diphosphonic acid MDPA, the O-phosphates of serine (Ser-OP) and threonine (Thr-OP) as well as the antiviral phosphonate foscarnet has been studied. hCA I was activated by all these compounds, with the best activators being MPA and PPA (K(A)s of 0.10-1.20 microM). MPA and PPA were on the other hand nanomolar inhibitors of hCA II (K(I)s of 98-99 nM). PALA showed an affinity of 7.8 microM, whereas the other compounds were weak, millimolar inhibitors of this isozyme. The best hCA IV inhibitors were PALA (79 nM) and PPA (5.4 microM), whereas the other compounds showed K(I)s in the range of 0.31-5.34 mM. The mitochondrial isozyme was weakly inhibited by all these compounds (K(I)s in the range of 0.09-41.7 mM), similarly to the transmembrane, tumor-associated isozyme (K(I)s in the range of 0.86-2.25 mM). Thus, phosphonates may lead to CA inhibitors with selectivity against two physiologically relevant isozymes, the cytosolic hCA II or the membrane-bound hCA IV.  相似文献   

12.
Phospholipase C activity capable of hydrolysing phosphatidylinositol in bovine heart was resolved into four forms (I-IV) by ion-exchange chromatography. Some of these forms could only be detected if the assay was performed at acidic pH (I and IV) or in the presence of deoxycholate (II). Gel-filtration chromatography indicated that the four forms had different molecular weights in the range 40000-120000. I, II and III all had pH optima in the range 4.5-5.5. However, the major form (III) also had substantial activity at pH 7.0 and above. The activities of I, II and III at pH 7.0 were stimulated by deoxycholate; this effect was most marked with I and II, which had very low activity at this pH. All forms of the enzyme were inhibited by EGTA and required 2-5 mM-CaCl2 for maximal activity. When the fractions eluted from the ion-exchange and gel-filtration columns were assayed with polyphosphoinositides as substrates there was a close correspondence to the elution profile obtained with phosphatidylinositol as substrate; there was no evidence for the existence in heart of phospholipase C activities specific for individual phosphoinositides.  相似文献   

13.
Four cytosolic 3,5,3'-triiodo-L-thyronine-binding proteins (CTBP) were isolated from hemoglobin-free human erythrocyte on DEAE-cellulose column by linear gradient of NaCl (0-0.4 M). CTBP I, II, and IV underwent rapid loss of their activities at low temperatures, whereas CTBP III was cold-insensitive. Reactivation of cold-inactivated CTBPs by warming was obtained at 20 and 37 degrees C. CTBP I, II, and IV were not inhibited by thiol-blocking agents, whereas CTBP III was blocked. Scatchard analysis of L-3,5,3'-triodo-thyronine binding showed a high affinity site with Kd on the order of 10(-10) M for CTBP II and Kd values of about 10(-9) M for CTBP I and IV and of about 10(-8) M for CTBP III. The order of affinity of iodothyronine analogues to CTBPs was similar in CTBP I, II, and IV but different in CTBP III. Chromatography on Sephacryl S-200 HR showed the elution of a single peak for each CTBP. The apparent molecular weights were about 200,000, 200,000, 25,000, and 60,000 for CTBP I, II, III, and IV, respectively. The physiological relevance of these CTBPs is discussed.  相似文献   

14.
The membrane-associated human isozyme of carbonic anhydrase, hCA IV, has been investigated for its interaction with anion inhibitors, for the CO(2) hydration reaction catalyzed by this enzyme. Surprisingly, halides were observed to act as potent hCA IV inhibitors, with inhibition constants in the range of 70-90 microM, although most of these ions, and especially fluoride, the best hCA IV inhibitor among the halides, are weak inhibitors of other isozymes, such as hCA I, II and V. The metal poisons cyanate, cyanide and hydrogen sulfide were weaker hCA IV inhibitors (K(i)'s in the range of 0.6-3.9 mM), whereas thiocyanate, azide, nitrate and nitrite showed even weaker inhibitory properties (K(i)'s in the range of 30.8-65.1 mM). Sulfate was a good hCA IV inhibitor (K(i) of 9 mM), although it is a much weaker inhibitor of isozymes I, II, V and IX. Excellent hCA IV inhibitory properties showed sulfamic acid, sulfamide, phenylboronic acid and phenylarsonic acid, with K(i)'s in the range of 0.87-0.93 microM, whereas their affinities for the other investigated isozymes were in the millimolar range. The interaction of some anions with the mitochondrial isozyme hCA V has also been investigated for the first time here. It has been observed that among all these isozymes, hCA V has the lowest affinity for bicarbonate and carbonate (K(i)'s in the range of 82-95 mM), which may represent an evolutionary adaptation of this isozyme to the rather alkaline environment (pH 8.5) within the mitochondria, where hCA V plays important functions in some biosynthetic reactions involving carboxylating enzymes (pyruvate carboxylase and acetyl coenzyme A carboxylase). There are important differences of affinity for anions between the two membrane-associated isozymes, hCA IV and hCA IX.  相似文献   

15.
The ratios of the oxidative phosphorylation complexes NADH:ubiquinone reductase (complex I), succinate:ubiquinone reductase (complex II), ubiquinol:cytochrome c reductase (complex III), cytochrome c oxidase (complex IV), and F1F0-ATP synthase (complex V) from bovine heart mitochondria were determined by applying three novel and independent approaches that gave consistent results: 1) a spectrophotometric-enzymatic assay making use of differential solubilization of complexes II and III and parallel assays of spectra and catalytic activities in the samples before and after ultracentrifugation were used for the determination of the ratios of complexes II, III, and IV; 2) an electrophoretic-densitometric approach using two-dimensional electrophoresis (blue native-polyacrylamide gel electrophoresis and SDS-polyacrylamide gel electrophoresis) and Coomassie blue-staining indices of subunits of complexes was used for determining the ratios of complexes I, III, IV, and V; and 3) two electrophoretic-densitometric approaches that are independent of the use of staining indices were used for determining the ratio of complexes I and III. For complexes I, II, III, IV, and V in bovine heart mitochondria, a ratio 1.1 +/- 0.2:1.3 +/- 0.1:3:6.7 +/- 0.8:3.5 +/- 0.2 was determined.  相似文献   

16.
Chalcones (1,3-diaryl-2-propen-1-ones) are alpha, beta-unsaturated ketones with cytotoxic and anticancer properties. Several reports have shown that compounds with cytotoxic properties may also interfere with DNA topoisomerase functions. Five derivatives of 4'-hydroxychalcones were examined for cytotoxicity against transformed human T (Jurkat) cells as well as plasmid supercoil relaxation experiments using mammalian DNA topoisomerase I. The compounds were 3-phenyl-1-(4'-hydroxyphenyl)-2-propen-1-one (I), 3-(p-methylphenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (II), 3-(p-methoxyphenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (III), 3-(p-chlorophenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (IV), and 3-(2- thienyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (V). The order of the cytotoxicity of the compounds was; IV > III > II > I > V. Compound IV, had the highest Hammett and log P values (0.23 and 4.21, respectively) and exerted both highest cytotoxicity and strongest DNA topoisomerase I inhibition. Compounds I and II gave moderate interference with the DNA topoisomerase I while III & V did not interfere with the enzyme.  相似文献   

17.
At least 6 N-acetylglucosaminyltransferases (GlcNAc-T I, II, III, IV, V and VI) are involved in initiating the synthesis of the various branches found in complex asparagine-linked oligosaccharides (N-glycans), as indicated below: GlcNAc beta 1-6 GlcNAc-T V GlcNAc beta 1-4 GlcNAc-T VI GlcNAc beta 1-2Man alpha 1-6 GlcNAc-T II GlcNAc beta 1-4Man beta 1-4-R GlcNAc T III GlcNAc beta 1-4Man alpha 1-3 GlcNAc-T IV GlcNAc beta 1-2 GlcNAc-T I where R is GlcNAc beta 1-4(+/- Fuc alpha 1-6)GlcNAcAsn-X. HPLC was used to study the substrate specificities of these GlcNAc-T and the sequential pathways involved in the biosynthesis of highly branched N-glycans in hen oviduct (I. Brockhausen, J.P. Carver and H. Schachter (1988) Biochem. Cell Biol. 66, 1134-1151). The following sequential rules have been established: GlcNAc-T I must act before GlcNAc-T II, III and IV; GlcNAc-T II, IV and V cannot act after GlcNAc-T III, i.e., on bisected substrates; GlcNAc-T VI can act on both bisected and non-bisected substrates; both Glc-NAc-T I and II must act before GlcNAc-T V and VI; GlcNAc-T V cannot act after GlcNAc-T VI. GlcNAc-T V is the only enzyme among the 6 transferases cited above which can be essayed in the absence of Mn2+. In studies on the possible functional role of N-glycan branching, we have measured GlcNAc-T III in pre-neoplastic rat liver nodules (S. Narasimhan, H. Schachter and S. Rajalakshmi (1988) J. Biol. Chem. 263, 1273-1281). The nodules were initiated by administration of a single dose of carcinogen 1,2-dimethyl-hydrazine.2 HCl 18 h after partial hepatectomy and promoted by feeding a diet supplemented with 1% orotic acid for 32-40 weeks. The nodules had significant GlcNAc-T III activity (1.2-2.2 nmol/h/mg), whereas the surrounding liver, regenerating liver 24 h after partial hepatectomy and control liver from normal rats had negligible activity (0.02-0.03 nmol/h/mg). These results suggest that GlcNAc-T III is induced at the pre-neoplastic stage in liver carcinogenesis and are consistent with the reported presence of bisecting GlcNAc residues in N-glycans from rat and human hepatoma gamma-glutamyl transpeptidase and their absence in enzyme from normal liver of rats and humans (A. Kobata and K. Yamashita (1984) Pure Appl. Chem. 56, 821-832).  相似文献   

18.
19.
Rayan GM  Frey B 《Plastic and reconstructive surgery》2001,107(6):1449-54; discussion 1455-7
A retrospective review of 148 patients with ulnar polydactyly was conducted to analyze the types, patterns of involvement, associated anomalies, treatments, and outcomes of this malformation. The hands only were involved in 123 patients, both hands and feet in 20 patients, and five patients had mixed radial and ulnar polydactyly. Ulnar polydactyly was more prevalent among males. Among African Americans, the condition was often bilateral. When unilateral, ulnar polydactyly occurred more often on the left side. The racial distribution was 103 African Americans (70 percent), 37 Caucasians (25 percent), four Native Americans, three Latin Americans, and one Asian. Five types were encountered: type I cutaneous nubbin, type II pedunculated digit, type III articulating digit with fifth metacarpal, type IV fully developed digit with sixth metacarpal, and type V polysyndactyly. The distribution of types in order of frequency was type II, III, V, I, and IV. Types I and II ulnar polydactyly combined were more prevalent (82 percent) than types III, IV, and V (18 percent). Types I and II were more common among African Americans. Types III, IV, and V ulnar polydactyly occurred more frequently among Caucasians, but these were slightly less prevalent than types I and II in this racial group. Five patients were syndromic; four were Caucasians, and one Asian. Most cases of ulnar polydactyly of the hand were treated by ligation (71 percent) in the nursery, whereas polydactyly of the foot was more often referred to a specialist to be treated by surgical ablation (92 percent). Treatment complications occurred more frequently in the hands than in the feet. The complication rate after ligation of ulnar polydactyly of the hand was 23.5 percent. The two main complications were tender or unacceptable nubbins and infections.  相似文献   

20.
A substance with a bactericidal effect onEscherichia coli was isolated from the cytoplasm of polymorphonuclear leucocytes. It consists of a mixture of different active substances and therefore a gel filtration using s Sephadex G-100 column was used to separate lysozyme from other active substances. The extract was separated by this procedure into five peaks, out of which peak I. possesed a significant bactericidal activity, peak II. and III. had a weak one, whereas the lysozyme activity was present in peak III., IV. and V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号