首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three site-specific endonucleases were found in thermophilic strain Bacillus species D6. One of them, BspD6II, is an isoschizomer of Eco57I. The second, BspD6III, is present in the strain in very small amount; therefore, it has not been characterized. This paper is devoted to the third, BspD6I, which recognizes pentanucleotide site 5'-GAGTC-3' and cleaves only one DNA strand at a distance of 4 nucleotides from the site in the 3'-direction in the chain with the GAGTC sequence, i.e., it behaves as a site-specific nickase. Nickase N.BspD6I cleaves one DNA strand only in double-stranded DNA and does not cleave single-stranded DNA. Site-specific methylase SscL1I (an isohypectomer of M·HinfI) that methylates adenine in the sequence 5'-GANTC-3' prevents DNA hydrolysis by nickase BspD6I.  相似文献   

2.
A fragment of chromosomal DNA from Bacillus species D6 containing the gene of nickase N.BspD6I and the regions adjacent to its 5"- and 3"-ends was cloned and sequenced. The nucleotide sequence of the nickase gene, except of one neutral change, is homologous to the nicking endonuclease N.BstNBI gene sequenced by Higgens et al. (2001). After integration of a PCR-copy of the nickase gene into an expression vector pET28b under the control of the phage T7 promoter, specific nicking activity was detected in the lysates of transformed E. coli cells.  相似文献   

3.
4.
Type II restriction endonuclease Mva1269I recognizes an asymmetric DNA sequence 5'-GAATGCN / -3'/5'-NG / CATTC-3' and cuts top and bottom DNA strands at positions, indicated by the "/" symbol. Most restriction endonucleases require dimerization to cleave both strands of DNA. We found that Mva1269I is a monomer both in solution and upon binding of cognate DNA. Protein fold-recognition analysis revealed that Mva1269I comprises two "PD-(D/E)XK" domains. The N-terminal domain is related to the 5'-GAATTC-3'-specific restriction endonuclease EcoRI, whereas the C-terminal one resembles the nonspecific nuclease domain of restriction endonuclease FokI. Inactivation of the C-terminal catalytic site transformed Mva1269I into a very active bottom strand-nicking enzyme, whereas mutants in the N-terminal domain nicked the top strand, but only at elevated enzyme concentrations. We found that the cleavage of the bottom strand is a prerequisite for the cleavage of the top strand. We suggest that Mva1269I evolved the ability to recognize and to cleave its asymmetrical target by a fusion of an EcoRI-like domain, which incises the bottom strand within the target, and a FokI-like domain that completes the cleavage within the nonspecific region outside the target sequence. Our results have implications for the molecular evolution of restriction endonucleases, as well as for perspectives of engineering new restriction and nicking enzymes with asymmetric target sites.  相似文献   

5.
The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.  相似文献   

6.
Flap endonucleases (FENs) isolated from archaea are shown to recognize and cleave a structure formed when two overlapping oligonucleotides hybridize to a target DNA strand. The downstream oligonucleotide probe is cleaved, and the precise site of cleavage is dependent on the amount of overlap with the upstream oligonucleotide. We have demonstrated that use of thermostable archaeal FENs allows the reaction to be performed at temperatures that promote probe turnover without the need for temperature cycling. The resulting amplification of the cleavage signal enables the detection of specific DNA targets at sub-attomole levels within complex mixtures. Moreover, we provide evidence that this cleavage is sufficiently specific to enable discrimination of single-base differences and can differentiate homozygotes from heterozygotes in single-copy genes in genomic DNA.  相似文献   

7.
Fan  Rong  Chai  Zhuangzhuang  Xing  Sinian  Chen  Kunling  Qiu  Fengti  Chai  Tuanyao  Qiu  Jin-Long  Zhang  Zhengbin  Zhang  Huawei  Gao  Caixia 《中国科学:生命科学英文版》2020,63(11):1619-1630

The length of the sgRNA-DNA complementary sequence is a key factor influencing the cleavage activity of Streptococcus pyogenes Cas9 (SpCas9) and its variants. The detailed mechanism remains unknown. Here, based on in vitro cleavage assays and base editing analysis, we demonstrate that reducing the length of this complementary region can confer nickase activity on SpCas9 and eSpCas9(1.1). We also show that these nicks are made on the target DNA strand. These properties encouraged us to develop a dual-functional system that simultaneously carries out double-strand DNA cleavage and C-to-T base conversions at separate targets. This system provides a novel tool for achieving trait stacking in plants.

  相似文献   

8.
A new rapid assay method for DNA ligases has been developed, which allows direct quantification of enzyme activity without using the traditional polyacrylamide gel electrophoretic technique. In this method, the 5'-biotinylated nicked duplex was used as a substrate for the ligase reaction, in which the 5'-end of the first oligonucleotide (19-mer) on the nicked strand is biotinylated and the second oligonucleotide (20-mer) on the same strand is labeled with radioactive 32P at the 5'-end. After ligation of the biotinylated 19-mer oligonucleotide into the second oligonucleotide with the reaction of DNA ligases, the biotinylated 19-mer oligonucleotide is converted into the radioactive 39-mer oligonucleotide. The ligase reaction products were heat-denatured to release both ligated and unligated biotinylated oligonucleotides. The biotinylated oligonucleotides were then captured on a streptavidin-coated microtiter plate and counted. The results obtained using this method correlated very well with those from the standard assay method using electrophoresis. Using this assay method, we were able to screen a chemical library and identify new DNA ligase inhibitors structurally related to resorcinol, which has growth inhibitory effects on the human breast cancer cell, MCF-7. The method described here is anticipated to be very useful for screening DNA ligase inhibitors from chemical libraries.  相似文献   

9.
The invasive signal amplification reaction is a sensitive method for single nucleotide polymorphism detection and quantitative determination of viral load and gene expression. The method requires the adjacent binding of upstream and downstream oligonucleotides to a target nucleic acid (either DNA or RNA) to form a specific substrate for the structure-specific 5' nucleases that cleave the downstream oligonucleotide to generate signal. By running the reaction at an elevated temperature, the downstream oligonucleotide cycles on and off the target leading to multiple cleavage events per target molecule without temperature cycling. We have examined the performance of the FEN1 enzymes from Archaeoglobus fulgidus and Methanococcus jannaschii and the DNA polymerase I homologues from Thermus aquaticus and Thermus thermophilus in the invasive signal amplification reaction. We find that the reaction has a distinct temperature optimum which increases with increasing length of the downstream oligonucleotide. Raising the concentration of either the downstream oligonucleotide or the enzyme increases the reaction rate. When the reaction is configured to cycle the upstream instead of the downstream oligonucleotide, only the FEN1 enzymes can support a high level of cleavage. To investigate the origin of the background signal generated during the invasive reaction, the cleavage rates for several nonspecific substrates that arise during the course of a reaction were measured and compared with the rate of the specific reaction. We find that the different 5' nuclease enzymes display a much greater variability in cleavage rates on the nonspecific substrates than on the specific substrate. The experimental data are compared with a theoretical model of the invasive signal amplification reaction.  相似文献   

10.
Restriction enzyme digestion of hemimethylated DNA.   总被引:26,自引:17,他引:9       下载免费PDF全文
Hemimethylated duplex DNA of the bacteriophage phi X 174 was synthesized using primed repair synthesis is in vitro with E. coli DNA polymerase I followed by ligation to produce the covalently closed circular duplex (RFI). Single-stranded phi X DNA was used as a template, a synthetic oligonucleotide as primer and 5-methyldeoxycytidine-5'-triphosphate (5mdCTP) was used in place of dCTP. The hemimethylated product was used as substrate for cleavage by various restriction enzymes. Out of the 17 enzymes tested, only 5 (BstN I, Taq I, Hinc II, Hinf I and Hpa I) cleaved the hemimethylated DNA. Two enzymes (Msp I and Hae III) were able to produce nicks on the unmethylated strand of the cleavage site. Msp I, which is known to cleave at CCGG when the internal cytosine residue is methylated, does not cleave when both cytosines are methylated. Another enzyme, Apy I, cleaves at the sequence CCTAGG when the internal cytosine is methylated, but is inactive on hemimethylated DNA in which both cytosines are methylated. Hemimethylated molecules should be useful for studying DNA methylation both in vivo and in vitro.  相似文献   

11.
12.
Fluorescently labeled oligonucleotides and DNA fragments have promise in nucleic acid research with applications that include DNA hybridization, automated DNA sequencing, fluorescence anisotropy, and resonance energy transfer studies. Past concerns with fluorescent-labeled DNA arose from interactions between fluorophores and DNA that result in quenched fluorescence. This quenching phenomenon is most problematic in fluorescence resonance energy transfer studies because quenching of the donor fluorescence could result from either resonance energy transfer or nontransfer effects. In the present study, relief of nontransfer quenching of a 14-mer fluorescein 5-isothiocyanate (FITC)-labeled oligonucleotide containing the BamHI restriction site was characterized with both steady-state and time-resolved fluorescence techniques. The FITC-labeled single strand was best fit by a triexponential decay with lifetimes of 0.5, 2.7, and 4.2 ns. The 4.2-ns component was found to contribute more than 80% of the total steady-state intensity. Upon annealing with an unmodified complementary strand, the contribution from the 4.2-ns component was significantly decreased, resulting in twofold quenching of total fluorescence. We reasoned that this quenching phenomenon should be a reversible process and could be employed to study strand separation processes in molecular biology. Hence, cleavage of the fluorescently labeled substrate was examined using DNase I and BamHI restriction endonuclease. Our results show that the quenched fluorescence is totally recovered upon cleavage (compared to that of the single strand). The extent of cleavage measured by fluorescence was confirmed by nondenaturing polyacrylamide gel electrophoresis analysis. We believe this fluorescence "dequenching" technique may be used to quantify the kinetics of other DNA strand separation and cleavage processes in molecular biology.  相似文献   

13.
Bleomycin displays clinical chemotherapeutic activity, but is so nonspecifically toxic that it is rarely administered. It was therefore of interest to determine whether bleomycin could be directed to cleave RNA or DNA at a specific site by conjugation to a complementary oligonucleotide. A 15 nt MYC complementary oligodeoxynucleotide (HMYC55) bearing a 5' bleomycin A5 (Blm) residue was designed to base-pair with nt 7047-7061 of human MYC mRNA. Reactivity of the Blm-HMYC55 conjugate (and mismatch controls) with a MYC mRNA 30-mer, a MYC DNA 30-mer, and a MYC 2'-O-methyl RNA 30-mer, nt 7041-7070, was analyzed in 100 microM FeNH(4)SO(4), 50 mM beta-mercaptoethanol, 200 mM LiCl, 10 mM Tris-HCl, pH 7.5, at 37 degrees C. Cleavage of the substrate RNA or DNA occurred primarily at the junction of the complementary DNA-target RNA duplex, 18-22 nt from the 5' end of the RNA. Reaction products with lower mobility than the target RNA or DNA also formed. Little or no reaction was observed with more than three mismatches in a Blm-oligodeoxynucleotide conjugate. Neither the short RNA or DNA cleavage fragments nor the low mobility products were observed in the absence of Fe(II), or the presence of excess EDTA. The target RNA was also cleaved efficiently by bleomycin within a hybrid duplex with a preformed single-nucleotide bulge in the RNA strand. New Blm-oligodeoxynucleotide conjugates containing long hexaethylene glycol phosphate based linkers between oligodeoxynucleotide and bleomycin were designed to target this bulge region. These conjugates achieved 8-18% cleavage of the target RNA, depending on the length of the linker. Blm-oligodeoxynucleotide conjugates thus demonstrated sequence specificity and site specificity against RNA and DNA targets.  相似文献   

14.
《Gene》1997,203(1):43-49
Zinc-finger proteins of the Cys2His2 type bind DNA–RNA hybrids with affinities comparable to those for DNA duplexes. Such zinc-finger proteins were converted into site-specific cleaving enzymes by fusing them to the FokI cleavage domain. The fusion proteins are active and under optimal conditions cleave DNA duplexes in a sequence-specific manner. These fusions also exhibit site-specific cleavage of the DNA strand within DNA–RNA hybrids albeit at a lower efficiency (≃50-fold) compared to the cleavage of the DNA duplexes. These engineered endonucleases represent the first of their kind in terms of their DNA–RNA cleavage properties, and they may have important biological applications.  相似文献   

15.
F Razvi  G Gargiulo  A Worcel 《Gene》1983,23(2):175-183
Ligation of a 5'-labeled DNA restriction fragment results in a circular DNA molecule carrying the two 32Ps at the reformed restriction site. Double digestions of the circular DNA with the original enzyme and a second restriction enzyme cleavage near the labeled site allows direct chemical sequencing of one 5'-labeled DNA strand. Similar double digestions, using an isoschizomer that cleaves differently at the 32P-labeled site, allows direct sequencing of the now 3'-labeled complementary DNA strand. It is possible to directly sequence both strands of cloned DNA inserts by using the above protocol and a multiple cloning site vector that provides the necessary restriction sites. The simultaneous and parallel visualization of both DNA strands eliminates sequence ambiguities. In addition, the labeled circular molecules are particularly useful for single-hit DNA cleavage studies and DNA footprint analysis. As an example, we show here an analysis of the micrococcal nuclease-induced breaks on the two strands of the somatic 5S RNA gene of Xenopus borealis, which suggests that the enzyme may recognize and cleave small AT-containing palindromes along the DNA helix.  相似文献   

16.
根据锤头型核酶的作用模式 ,设计、合成和克隆了特异切割苹果锈果类病毒ASSVd正链 (194-196位点 )或负链 (89- 91位点 )RNA的 2个短臂锤头型核酶基因 :42nt的RzASSVd(+)和 40nt的RzASSVd(- )。经转录获得核酶转录物和32P标记的ASSVd正、负链转录物。将核酶与ASSVd混合 ,50℃或 37℃保温 3~ 4h ,进行 8%PAGE(含8mol L尿素 )和放射自显影分析。体外切割检测表明 :2个核酶均具有特异切割活性 ,其中RzASSVd(- )对ASSVd负链的切割活性较高 ,对ASSVd正链不起作用。RzASSVd(+)对ASSVd正链的切割活性较弱 ,对ASSVd负链亦不起作用。在此基础上 ,构建得到双价核酶基因pGEMRzASSVd(± )。  相似文献   

17.
CRISPR–Cas9 is a ribonucleoprotein complex that sequence-specifically binds and cleaves double-stranded DNA. Wildtype Cas9 and its nickase and cleavage-incompetent mutants have been used in various biological techniques due to their versatility and programmable specificity. Cas9 has been shown to bind very stably to DNA even after cleavage of the individual DNA strands, inhibiting further turnovers and considerably slowing down in-vivo repair processes. This poses an obstacle in genome editing applications. Here, we employed single-molecule magnetic tweezers to investigate the binding stability of different Streptococcus pyogenes Cas9 variants after cleavage by challenging them with supercoiling. We find that different release mechanisms occur depending on which DNA strand is cleaved. After initial target strand cleavage, supercoils are only removed after the collapse of the R-loop. We identified several states with different stabilities of the R-loop. Most importantly, we find that the post-cleavage state of Cas9 exhibits a higher stability than the pre-cleavage state. After non-target strand cleavage, supercoils are immediately but slowly released by swiveling of the non-target strand around Cas9 bound to the target strand. Consequently, Cas9 and its non-target strand nicking mutant stay stably bound to the DNA for many hours even at elevated torsional stress.  相似文献   

18.
To cleave RNA molecules using RNase H in a site-specific manner, a short deoxyoligonucleotide (3-5mer) joining with 2'-O-methyl oligonucleotide(s) was designed as a DNA splint to be used. Model experiments were carried out using ribooligonucleotide substrates (9 and 18 mer). It was found that the use of this type of splints (9 mer) causes a unique cleavage by RNase H. For example, when 3'm (GA)d(AGAA)m(GGU)5' was used as a hybridization strand, 32pUCUUUCUUCUUCCAGGAU was cleaved specifically between U11 and C12 to yield 32pUCUUUCUUCUU. This method will have a variety of applications for the study of RNA.  相似文献   

19.
20.
Inhibition of gene expression by catalytic RNA (ribozymes) requires that ribozymes efficiently cleave specific sites within large target RNAs. However, the cleavage of long target RNAs by ribozymes is much less efficient than cleavage of short oligonucleotide substrates because of higher order structure in the long target RNA. To further study the effects of long target RNA structure on ribozyme cleavage efficiency, we determined the accessibility of seven hammerhead ribozyme cleavage sites in a target RNA that contained human immunodeficiency virus type 1 (HIV-1) vif - vpr . The base pairing-availability of individual nucleotides at each cleavage site was then assessed by chemical modification mapping. The ability of hammerhead ribozymes to cleave the long target RNA was most strongly correlated with the availability of nucleotides near the cleavage site for base pairing with the ribozyme. Moreover, the accessibility of the seven hammerhead ribozyme cleavage sites in the long target RNA varied by up to 400-fold but was directly determined by the availability of cleavage sites for base pairing with the ribozyme. It is therefore unlikely that steric interference affected hammerhead ribozyme cleavage. Chemical modification mapping of cleavage site structure may therefore provide a means to identify efficient hammerhead ribozyme cleavage sites in long target RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号