首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The effect of divalent cations on bovine sperm adenylate cyclase activity was studied. Mn2+, Co2+, Cd2+, Zn2+, Mg2+ and Ca2+ were found to satisfy the divalent cation requirement for catalysis of the bovine sperm adenylate cyclase. These divalent cations in excess of the amount necessary for the formation of the metal-ATP substrate complex were found to stimulate the enzyme activity to various degrees. The magnitude of stimulation at saturating concentrations of the divalent cations was strikingly greater with M2+ than with either Ca2+, Mg2+, Zn2+, Cd2+ or Co2+. The apparent Km was lowest for Zm2+ (0.1 - 0.2 mM) than for any of the other divalent cations tested (1.2 - 2.3 mM). The enzyme stimulation by Mn2+ was decreased by the simultaneous addition of Co2+, Cd2+, Ni2+ and particularly Zn2+ and Cu2+. The antagonism between Mn2+ and Cu2+ or Zn2+ appeared to have both competitive and non-competitive features. The inhibitory effect of Cu2+ on Mn2+-stimulated adenylate cyclase activity was prevented by 2,3-dimercaptopropanol, but not by dithiothreitol, L-ergothioneine, EDTA, EGTA or D-penicillamine. Ca2+ at concentrations of 1-5 mM was found to act synergistically with Mg2+, Zn2+, Co2+ and Mn2+ in stimulating sperm adenylate cyclase activity. The Ca2+ augmentation of the stimulatory effect of Zn2+, Co2+, Mg2+ and Mn2+ appeared to be specific.  相似文献   

2.
A highly active phospholipase A2 in ram spermatozoa plasma membranes has been established. Phospholipase A2 was optimally active at pH 7.4 and was Ca2+ dependent. Low concentrations of K+ (25 mM) were found to inhibit phospholipase A2 activity, whereas higher concentrations induced enzyme reactivation. An inhibitory effect of Zn2+ has also been observed.  相似文献   

3.
Phospholipase A2 was isolated from human sperm and its potential role in the membrane fusion events of fertilization was examined. Highly purified enzyme hydrolyzed the phospholipids of [1-14C]oleate-labeled Escherichia coli optimally at neutral to alkaline pH with 5 mM CaCl2 and 150 mM NaCl (specific activity = 20 mumol/min/mg). Activity was inhibited in a dose-dependent manner by an oligomer of prostaglandin B1 (IC50 = 1.5 microM) reported to inhibit human phospholipases A2 in vitro and in situ. Sperm phospholipase A2 injected into mouse foot pad induced a dose-dependent edema that was inhibited by oral administration of prostaglandin Bx (IC50 < or = 10 mg/kg) or by pretreatment of the enzyme with 4-bromophenacyl bromide. Human sperm phospholipase A2 (10 micrograms) induced fusion of phosphatidylserine vesicles in the presence of 1 mM calcium chloride by approximately 80% (+/- 10%) as determined by monitoring turbidity (O.D.400) and efficiency of fluorescence resonance energy transfer. This enzyme-induced fusion was accompanied by phospholipid hydrolysis, and both fusion and phospholipid degradation were inhibited by more than 60% when enzyme was preincubated with 5 microM prostaglandin Bx. Sperm penetration of zona pellucida-free hamster oocytes was inhibited in a dose-dependent fashion when sperm were incubated with prostaglandin Bx (IC50 approximately 15 microM) during capacitation; sperm motility was not affected by this treatment. Capacitation in the presence of prostaglandin Bx had little to no effect on the in vitro acrosome reaction. These results suggest that sperm phospholipase A2 and its modulators may contribute to membrane fusion events in mammalian fertilization.  相似文献   

4.
The kinetic properties and inhibitor sensitivity of human sperm phospholipase A2 (PLA2; EC 3.1.1.4) were studied. Phospholipase activity was isolated from human spermatozoa by acid extraction. Hydrolysis of dipalmitoyl phosphatidylcholine was specific to the sn-2 position. Activity was sensitive to product inhibition (60% inhibition by 0.1 mM lysophosphatidylcholine). The effects of Ca2+ and sodium deoxycholate on enzyme activity were biphasic; maximal activities were observed at 0.5 mM concentration of each agent. PLA2 was stimulated (135%) by 3% dimethylsulfoxide and was inhibited by elevated ionic strength (approximately 70% inhibition with either 0.2 M NaCl or 0.2 M KCl). Two molecular forms of PLA2 were kinetically distinguishable, one with an apparent Michaelis constant and maximal reaction velocity of 3.0 microM and 0.64 mlU/mg protein and the other with respective constants of 630 microM and 32.0 mlU/mg protein. Both forms of the enzyme were Ca2+ dependent and heat stable; however, the low-Km activity was less resistant to 60 degrees C preincubation at pH 7.5 (28% inactivation of low-Km activity after 45 min, as compared to no effect on high-Km activity). Quinacrine was a noncompetitive PLA2 inhibitor with Kis for low- and high-Km activities of 0.42 mM and 0.49 mM, respectively. Trifluoperazine (calmodulin antagonist) inhibited the high-Km activity noncompetitively (Ki = 87 microM) and the low-Km activity by a mechanism consistent with the removal of a nonessential activator. Dissociation and rate constants for inactivation of low- and high-Km activities by p-bromophenacyl bromide were 0.28 mM and 0.032 min-1, and 0.73 mM and 0.066 min-1, respectively. PLA2 was inhibited by p-nitrophenyl-p'-guanidinobenzoate, at higher concentrations (10(-4)-10(-3) M) than required to inhibit trypsinlike proteinases; p-aminobenzamidine, another potent trypsin/acrosin inhibitor, stimulated (approximately 40%) PLA2 at concentrations from 2-5 mM but inhibited PLA2 (40-50%) at a concentration of 10 mM. MnCl2 (5mM) inhibited low- and high-Km PLA2 activities by 77% and 76%, respectively. Quinacrine (0.4 mM), trifluoperazine (20 microM), p-bromophenacyl bromide (20 microM), and MnCl2 (5 mM) were tested as inhibitors of the ionophore A23187-induced human acrosome reaction. Inhibition was noted only with quinacrine (32%) and MnCl2 (93%). The effect of MnCl2 was restricted to an interaction with A23187, rather than with PLA2; p-Bromophenacyl bromide inhibited (P less than 0.05) PLA2 (29%) when added to intact spermatozoa but had no effect on the acrosome reaction. PLA2 inhibition was poorly correlated with the acrosome reaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Sopina VA 《Tsitologiia》2002,44(11):1120-1128
Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.  相似文献   

6.
Phospholipase activity was studied in the protozoan Tetrahymena pyriformis NT-1 by using exogenous phosphatidylethanolamine and phosphatidylcholine. Several phospholipase activities were found in Tetrahymena homogenates. They were distinguished with respect to pH optimum, activity dependence on Ca2+, substrate specificity and positional specificity. Ca2+-Dependent phospholipase activity had an optimal pH around 9 and gave rise to free fatty acid and lysophospholipid. This enzyme hydrolyzes phosphatidylethanolamine but not phosphatidylcholine. The alkaline phospholipase with A1 activity was located mainly in the surface membrane (pellicle fraction). The enzyme activity had a pH optimum ranging from 8 to 9, and required 2 mM CaCl2 for the maximal activity. All detergents tested inhibited the enzyme activity. Ca2+-Independent phospholipase activity had an optimal pH from 4 to 5 and gave rise to free fatty acid, lysophospholipid, diacylglycerol, and monoacylglycerol. We concluded that there are at least three phospholipase in Tetrahymena homogenates, i.e., alkaline phospholipase A and acidic phospholipases A and C.  相似文献   

7.
The role of a K+ ion influx and Na+,K+-ATPase activity in the hamster sperm acrosome reaction (AR) was examined, using a range of concentrations of K+,K+ ionophores and a Na+,K+-ATPase inhibitor. Washed epididymal hamster sperm, capacitated in vitro in an artificial medium containing 2 mM Ca2+, 147 mM Na+, and 3, 6, 12, 18, or 24 mM K+, began undergoing the AR after 3 h of incubation. Sperm incubated in low K+ (0.9 mM) failed to undergo the AR even after 5 h of incubation. Sperm in 0.9 mM K+ could be induced to undergo the AR when either K+ (12 mM) alone or K+ (12 mM) with 0.1 microM nigericin was added after 3.5 h of incubation. The addition of K+ alone stimulated the AR in 30 min, whereas nigericin plus K+ stimulated the AR 15 min after addition. Neither nigericin added alone (0.9 mM K+) nor nigericin plus 12 mM K+ added to a low Ca2+ (0.35 mM) system resulted in acrosome reactions. Valinomycin (1 nM) did not stimulate the AR when added together with K+ (3-24 mM) to sperm incubated in 0.9 mM K+ for 3.5 h but markedly decreased sperm motility. Micromolar levels of ouabain blocked the AR when added between t = 0--3 h to sperm incubated with 3-24 mM K+. Inhibition of AR by the addition of 1 microM ouabain to sperm incubated with 3 mM K+ was completely reversed by the addition of 0.1 microM nigericin at t = 3.5 h. These results suggest that Na+,K+-ATPase activity and the resulting K+ influx are important for the mammalian sperm AR. Some similarities between requirements for the hamster sperm AR and secretory granule exocytosis are discussed.  相似文献   

8.
The catalytic properties of two ATPases which had been purified from bovine brain microtubules (Tominaga, S. & Kaziro, Y. (1983) J. Biochem. 93, 1085-1092) were studied. ATPase I, which had a molecular weight of 33,000, required the presence of 1.0 microM tubulin, 0.2 mM Mg2+, and 10 mM Ca2+ for maximal activity. The activation of ATPase I by tubulin was specific to the native form of tubulin, which could not be replaced by F-actin or tubulin denatured either by heat or more mildly by dialysis in the absence of glycerol. ATPase I was not specific to ATP, and GTP, and to a lesser extent, UTP and CTP were also hydrolyzed. Km for ATP of ATPase I was about 0.04 mM. ATPase I was inhibited by 5 mM Mg2+, 0.04 M K+, 10(-3) M vanadate, 10 mM N-ethylmaleimide, or 20% (v/v) glycerol. ATPase II, which was associated with membrane vesicles, required the presence of 0.2-2.0 mM Mg2+ and 20 mM KCl for activity. Tubulin stimulated the reaction of ATPase II only partially, and the addition of Ca2+ was rather inhibitory. ATPase II was specific to ATP with a Km value of 0.14 mM. It was inhibited by 1.6 mM N-ethylmaleimide and 20% (v/v) glycerol, but was not very sensitive to vanadate. Instead, ATPase II was inhibited by trifluoperazine, chlorpromazine, and nicardipin at 10(-3) M.  相似文献   

9.
The partial characterization of a calcium-dependent phospholipase A2 associated with membranes of mouse sperm is described. Intact and sonicated sperm had comparable phospholipase A2 activity which was maximal at pH 8.0 using [1-14C]oleate-labeled autoclaved Escherichia coli or 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine as substrates. More than 90% of the activity was sedimented when the sperm sonicate was centrifuged at 100 000 X g, indicating that the enzyme is almost totally membrane-associated. The activity is stimulated 200% during the ionophore-induced acrosome reaction and is almost equally distributed between plasma/outer acrosomal and inner acrosomal membrane fractions. The membrane-associated phospholipase A2 had an absolute requirement for low concentrations of Ca2+; Sr2+, Mg2+ and other divalent and monovalent cations would not substitute for Ca2+. In the presence of optimal Ca2+, zinc and gold ions inhibited the activity while Cu2+ and Cd2+ were without effect. Incubation of sperm sonicates with 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine in the presence and absence of sodium deoxycholate demonstrated the presence of phospholipase A2 and lysophospholipase activities. No phospholipase A1 activity was detectable. Indomethacin, sodium meclofenamate and mepacrine, but not dexamethasone or aspirin, inhibited the sperm phospholipase A2 activity. Preincubation with p-bromophenacyl bromide inhibited phospholipase A2, suggesting the presence of histidine at the active site. The enzyme may play an important role in the membrane fusion events in fertilization.  相似文献   

10.
Human platelets labelled with either [14C]arachidonic acid or [32P]orthophosphate were loaded or not with the Ca2+ fluorescent indicator quin 2. They were then incubated in the presence or in the absence of human thrombin (1 U/ml) in a medium where Ca2+ concentration was adjusted near zero or to 1 mM. Under these conditions, phospholipase A2 activity, as detected by the release of [14C]arachidonate and of its metabolites, or by the hydrolysis of [14C]phosphatidylcholine, was severely impaired in quin 2-loaded platelets upon removal of external Ca2+. However, Ca2+ was not required in non-loaded platelets, where a maximal phospholipase A2 activity was detected in the absence of external Ca2+. In contrast, phospholipase C action, as determined from the amounts of [14C]diacylglycerol, [14C]- or [32P]phosphatidic acid formed, appeared to be much less sensitive to the effects of quin 2 loading and of Ca2+ omission. By using various concentrations of quin 2, it was found that the inhibitory effect exerted against phospholipase A2 could be overcome by external Ca2+ only when the intracellular concentration of the calcium chelator did not exceed 2 mM. At higher concentrations averaging 3.5 mM of quin 2, phospholipase A2 activity was fully suppressed even in the presence of external Ca2+, whereas phospholipase C was still active, although partly inhibited. It is concluded that platelet phospholipase A2 requires higher Ca2+ concentrations than phospholipase C to display a maximal activity. By comparing platelet phospholipase A2 activity under various conditions with the values of cytoplasmic free Ca2+ as detected by quin 2 fluorescence, it is proposed that cytoplasmic free Ca2+ in control platelets stimulated with thrombin can attain concentrations above 1 microM, probably close to 5-10 microM, as recently determined with the photoprotein aequorin (Johnson, P.C., Ware, J.A., Cliveden, P.B., Smith, M., Dvorak, A.M. and Salzman, E.W. (1985) J. Biol. Chem. 260, 2069-2076).  相似文献   

11.
Phospholipase A2 activity in the postnuclear supernatant of lymphocytes has been studied by measuring 14C arachidonate released from labelled phosphatidyl ethanolamine (PE) and phosphatidyl choline (PC) as exogenous substrates. The pH optimum was 7.5-9.0 for PE and 9.0 for PC. Phospholipase A2 was not detected in the presence of 2 mM EGTA. It was optimal with the millimolar calcium concentrations and higher towards PE. Preincubation of lymphocytes with 0.5 M ionophore A-23187 was followed by 2.4 fold stimulation of the phospholipase activity. A stimulatory effect was observed after preincubation of cells with 10 micrograms/ml of phytohemagglutinin, lipopolysaccharide, concanavalin A; it decreased as: lipopolysaccharide greater than phytohemagglutinin greater than concanavalin A. The results obtained have suggested the possibility of existence of different forms of phospholipase A2 in the spleen lymphocytes and participation of the enzyme in the early signalling events.  相似文献   

12.
Phospholipid base exchange activity using choline as substrate was detected in plasma membranes (PM) and other subcellular fractions of rat liver, with microsomes (MS) showing the highest specific activity. In contrast, phospholipase D activity was only detected in PM. In PM, choline exchanged for phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS), whereas ethanolamine exchanged for PE and PS, and serine exchanged for PS. Ca2+ (10 microM or higher) stimulated choline incorporation into PC in MS and PM, whereas Mg2+ (10 microM or higher) stimulated it only in PM. Ethanolamine and serine incorporation into PM phospholipids was also stimulated by Ca2+, and inositol incorporation by Mn2+. Phospholipase D activity was substantial in the presence of EGTA and was slightly stimulated by Ca2+ concentrations less than 500 microM. It was undetectable without Mg2+. Low concentrations of oleate (1 mM or less) stimulated phospholipase D activity. These concentrations inhibited choline base exchange activity, whereas higher concentrations (3-8 mM) were stimulatory. Comparison of the subcellular distribution and Ca2+, Mg2+, and oleate effects on choline base exchange and phospholipase D activities supports the view that they are catalyzed by different enzymes. The incorporation of choline, but not ethanolamine or serine, into the phospholipids of PM, but not MS, was stimulated by micromolar concentrations of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) and other slowly hydrolyzable analogues of GTP. GDP, GMP, and other nucleoside triphosphates and their analogues were ineffective. GTP gamma S stimulation of base exchange activity was dependent upon Mg2+ and was inhibited by high concentrations of guanosine 5'-O-2-(thio)diphosphate. In the presence of low concentrations of GTP gamma S, ATP and its slowly hydrolyzable analogues stimulated base exchange activity. Dose-response curves for these nucleotides revealed a potency order consistent with mediation by purinergic receptors of the P2Y type. Base exchange activity stimulated by ATP plus GTP gamma S or GTP gamma S alone was not altered by treatment with pertussis or cholera toxins. These results suggest that the choline base exchange activity of liver PM is regulated by a pertussis toxin-insensitive G-protein linked to P2Y purinergic receptors.  相似文献   

13.
Distilled water homogenates of Pseudomonas solanacearum B1, a highly fimbriated strain, strongly agglutinated human group A erythrocytes. The fimbriae and hemagglutinating activity were precipitated from the crude extract with 1% acetic acid, redissolved at pH 10, and precipitated again with 20 mM CaCl2 at pH 6.9. Ca2+, Mg2+, and Zn2+ had similar ability to precipitate the fimbrial hemagglutinin, but Na+ and K+ were much less effective. The fimbrial protein in the precipitate was purified to homogeneity by preparative gel electrophoresis in sodium dodecyl sulfate. The major protein band was eluted, and sodium dodecyl sulfate was removed by chromatography on ion retardation resin (AG 11A8) in 6 M urea. After dialysis against 10 mM sodium acetate (pH 4.5) to remove the urea, the protein reassembled to yield long fibers. These fibers were identical to fimbriae in the crude extract in diameter (6 nm) and in their ability to cause hemagglutination. The purified fimbriae contained no carbohydrates and wee similar to other bacterial fimbriae in amino acid composition, with hydrophobic amino acids comprising 41.8% of the total.  相似文献   

14.
1. Phospholipase C [EC 3.1.4.3] found in the growth medium of Streptomyces hachijoensis was purified about sixty-fold by dialysis and column chromatography on Sephadex G-50. 2. The active fraction was separated by isoelectric focusing into two fractions, phospholipase C-I (pI 6.0) and phospholipase C-II (pI 5.6). 3. Both purified phospholipases C were homogeneous by immunodiffusion and were not differentiated as regards antigencity. 4. Phospholipase C-I had maximal activity at pH 8.0 and the optimal temperature was 50degree. Phospholipase C-I was stable at 50degrees for 30 min and was stable at neutral pH. 5. The activity of phospholipase C-I was inhibited by high concentrations of various detergents such as Triton X-100, sodium, cholate, SDS and was also inhibited by Ca2+, Ba2+, Al3+, and EDTA, but was stimulated by Mg2+, and ethyl ether. 6. The Km value of phospholipase C-I was 0.9 mM, using phosphatidylcholine as a substrate. 7. By the gel filtration procedure, the molecular weights of phospholipase C-I and -II were both determined to be 18,000. 8. Phosphatidylcholine, phosphatidylinositol, cardiolipin, sphingomyelin, and lysophosphatidylcholine were hydrolyzed by phospholipase C-I, but phosphatidylethanolamine and phosphatidylserine were hydrolyzed with difficulty under the same conditions, Phospholipase C-I also hydrolyzed phosphatidic acid.  相似文献   

15.
D O Sobel 《Peptides》1986,7(3):443-448
To investigate the role of calcium (Ca+2) in CRF stimulated ACTH release, we studied the effect of the following conditions on CRF (10 nM) mediated ACTH release in primary pituitary monolayer culture: different concentrations of Ca+2; EGTA; lanthanum (La+3) and nifedipine, blockers of calcium cell influx and penfluridol, trifluoperazine, and pimozide, inhibitors of calmodulin activation. Higher concentrations of Ca+2 in the culture medium led to greater amounts of CRF induced ACTH release. EGTA at 3 mM decreased the amount of CRF stimulated ACTH release by 60% but did not alter the spontaneous release of ACTH. At 0.5 mM and 1.0 mM La+3, ACTH release induced by CRF was inhibited by 23% and 35% respectively (p less than 0.01). Nifedipine (both 10(-5) and 10(-4) M) inhibited CRF stimulated ACTH release but only to a maximum of 30%. This inhibition was completely overcome by the addition of 12 mM calcium. Penfluridol, pimozide, and trifluoperazine blocked the release of ACTH induced by CRF by 63%, 26%, and 0% respectively. In conclusion, extracellular Ca+2, Ca+2 influx, and calmodulin play a role in the mechanism of CRF stimulated ACTH in vitro.  相似文献   

16.
Enzymatic activity which hydrolyzes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) yielding ADP has been identified in extracts of eubacteria, Escherichia coli and Acidaminococcus fermentans, and of a highly thermophilic archaebacterium, Pyrodictum occultum. Specific Ap4A (symmetric) pyrophosphohydrolase from Escherichia coli K12 has been purified almost 400-fold. The preparation was free of phosphatase, ATPase, phosphodiesterase, AMP-nucleosidase, and adenylate kinase. The Ap4A pyrophosphohydrolase molecular weight estimated by gel filtration is 27,000 +/- 1,000. Activity maximum is at pH 8.3. The Km value computed for Ap4A is 25 +/- 3 microM. The sulfhydryl group(s) is essential for enzyme activity. Metal chelators, EDTA, and o-phenanthroline, inhibit Ap4A hydrolysis; I0.5 values are 3 and 50 microM, respectively. Co2+ is a strong stimulator with an almost 100-fold increase in rate of Ap4A hydrolysis and a plateau in the range of 100-500 microM Co2+, when compared with the nonstimulated hydrolysis. Other transition metal ions, Mn2+, Cd2+, and Ni2+, stimulate by factors of 8, 3.5, and 3.5, respectively, with optimal concentrations in the range 200-500, 2-5, and 4-8 microM, respectively. Zn2+, Cu2+, and Fe2+, up to 30 microM, are without effect and they inhibit at higher concentrations. Mg2+ or Ca2+, in the absence of other divalent metal ions, are weak stimulators (1.5-fold stimulation occurs at 1-2 mM concentration), but act synergistically with Co2+ at its suboptimal concentrations. Stimulation in the presence of 10 microM Co2+ and either 1 mM MgCl2 or CaCl2 increases up to 75-fold. The same degree of synergy is found at 10 microM Co2+ and either 2-5 mM spermidine or 0.5-1.5 mM spermine. Besides Ap4A, bacterial Ap4A pyrophosphohydrolase hydrolyzes effectively Ap5A and Gp4G, and, to some extent, p4A, Ap6A, and Ap3A yielding in each case corresponding nucleoside diphosphate as one of the products.  相似文献   

17.
Phospholipase A2 activity was studied in the renal cortex and medulla of stroke-prone spontaneously hypertensive rat (SHRSP) and normotensive rat (WKY), and the subcellular localization of its activity was determined. Enhanced activity was found in both the cortical and medullary microsomes in SHRSP kidneys. In SHRSP, but not in WKY, phospholipase A2 activity progressively increased with age. This phospholipase A2 had substrate specificity toward phosphatidylethanolamine. There were no differences in optimal pH, substrate specificity, heat lability, and responses to Triton X-100 and deoxycholate between SHRSP and WKY. Ca2+ stimulated phospholipase A2 activity in both animals. The maximal activation was achieved at 5 mM Ca2+, and EDTA strongly inhibited the activity. But the response to Ca2+ was different in each. Ca2+ enhanced this activity in SHRSP markedly compared with WKY. It seems that Ca2+ is specifically required for phospholipase A2 activity in SHRSP. Though the influx of Ca2+ into microsomal membranes was not enhanced, the Ca2+ efflux of microsomal membranes decreased in SHRSP. This results in increases of intramicrosomal Ca2+, which may cause the subsequent activation of phospholipase A2. The Ca2+ permeability may be one of the factors in the increased phospholipase A2 activity in SHRSP.  相似文献   

18.
1. The distribution of the hydrolyses of phosphatidylcholine by phospholipase A2 and phospholipase A1, and the hydrolysis of lysophosphatidylcholine by lysophospholipase, in subcellular and subsynaptosomal fractions of cerebral cortices of guinea-pig brain, was determined. 2. Noradrenaline stimulated hydrolysis by phospholipase A2 in whole synaptosomes, synaptic membranes and fractions containing synaptic vesicles. 3. Stimulation of hydrolysis by phospholipase A2 in synaptic membranes by noradrenaline was enhanced by CaCl2, and by a mixture of ATP and MgCl2. The optimum concentration of CaCl2, in the presence of ATP and MgCl2, for stimulation by 10 muM-noradrenaline was in the range 1-10muM. The optimum concentration for ATP-2MgCl2 in the presence of 1 muM-CaCl2 was in the range 0.1-1mM. 4. Hydrolysis by phospholipase A2 of synaptic membranes was also stimulated by acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine), histamine, psi-aminobutyric acid, glutamic acid and aspartic acid. With appropriate concentrations of cofactors, sigmoidal dose-response curves were obtained, half-maximum stimulations being obtained with concentrations of stimulant in the range 0.1-1muM. 5. Taurine also stimulated hydrolysis of phosphatidylcholine by phospholipase A2. There were only slight stimulations with methylamine, ethylenediamine or spermidine. No stimulation was obtained with glucagon.  相似文献   

19.
Ca2+ influx across the sea urchin sperm plasma membrane is a necessary step during the egg jelly-induced acrosome reaction. There is pharmacological evidence for the involvement of Ca2+ channels in this influx, but their presence has not been directly demonstrated because of the small size of this cell. Sea urchin sperm Ca2+ channels are being studied by fusing isolated plasma membranes into planar lipid bilayers. With this strategy, a Ca2+ channel has been detected with the following characteristics: (a) the channel exhibits a high mainstate conductance (gamma MS) of 172 pS in 50 mM CaCl2 solutions with voltage-dependent decaying to smaller conductance states at negative Em; (b) the channel is blocked by millimolar concentrations of Cd2+, Co2+, and La3+, which also inhibit the egg jelly-induced acrosome reaction; (c) the gamma MS conductance sequence for the tested divalent cations is the following: Ba2+ greater than Sr2+ greater than Ca2+; and (d) the channel discriminates poorly for divalent over monovalent cations (PCa/PNa = 5.9). The sperm Ca2+ channel gamma MS rectifies in symmetrical 10 mM CaCl2, having a maximal slope conductance value of 94 pS at +100 mV applied to the cis side of the bilayer. Under these conditions, a different single-channel activity of lesser conductance became apparent above the gamma MS current at positive membrane potentials. Also in 10 mM Ca2+ solutions, Mg2+ permeates through the main channel when added to the cis side with a PCa/PMg = 2.9, while it blocks when added to the trans side. In 50 mM Ca2+ solutions, the gamma MS open probability has values of 1.0 at voltages more positive than -40 mV and decreases at more negatives potentials, following a Boltzmann function with an E0.5 = -72 mV and an apparent gating charge value of 3.9. These results describe a novel Ca2(+)-selective channel, and suggest that the main channel works as a single multipore assembly.  相似文献   

20.
The apparent activity of phospholipase C[EC 3.1.4.3] of Clostridium novyi type A toward phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine increased in the presence of sodium deoxycholate (SDC). The effects of divalent cations on phospholipase C activity were examined in detail at various concentrations of these cations. These effects varied with substrate. Hydrolysis of phosphatidylcholine by this enzyme significantly increased in the presence of Mg2+ or Ca2+. Hydrolysis of sphingomyelin was inhibited by Ca2+, but increased in the presence of Mg2+. Phosphatidylethanolamine-hydrolyzing activity increased only slightly in the presence of Mg2+ and Ca2+. Zn2+ rather inhibited hydrolysis of these substrates. The effects of divalent cations and detergent appear to be directly related to the physical state of the phospholipid micelles used as substrates. When phosphatidylcholine, sphingomyelin, or phosphatidylethanolamine was used as a substrate, phospholipase C activity was completely inhibited by 2.5 mM EDTA or o-phenanthroline (concentration in the final incubation mixture: 0.5 mM), and was fully restored by Zn2+ alone. Both Ca2+ and Mg2+ were ineffective for reactivation. The isoelectric point of the enzyme was 7.1 +/- 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号