首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper demonstrates the functionality, laboratory testing and field application of a microbial sensor, which can be modified to monitor organic pollution extent, toxicity and over-(under)load of wastewaters both under anaerobic and aerobic conditions. Since nitrification is related to protons formation and the addition of alkaline is necessary for pH control, an aerobic biosensor monitoring Na2CO3 consumption was developed and practically implemented to control the nitrification process. As CO2 is the respiration product from aerobic degradation which can be correlated to the organic pollution extent, the previous biosensor was modified to monitor and measure the online toxicity and BOD/COD. Under anaerobic conditions, the online measurement of NaOH consumption and biogas production allowed the detection of toxicity incidents and over-(under)load in the influent. Such toximeters get in contact with the wastewater the earliest possible, providing sufficient time for protection of sensitive biological wastewater treatment processes and for the implementation of control and management strategies.  相似文献   

2.
The operation of a wastewater treatment plant treating effluents from a dairy laboratory was monitored by an advanced system. This plant comprises a 12 m(3) anaerobic filter (AF) reactor and a 28 m(3) sequential batch reactor (SBR) coupled in series and is equipped with the following on-line measurement devices: biogas flow meter, feed and recycling flow meters, temperature sensor, dissolved oxygen analyzer, and redox meter. Other parameters such as chemical oxygen demand (COD), volatile fatty acids (VFA), etc. were determined off-line. The plant has been in operation for 634 days, the influent flow rate being 6-8 m(3)/d. COD concentration of the influent ranged between 8 and 12 kg COD/m(3), resulting in COD values in the effluent around 50-200 mg/L. The behavior of the system was studied using the set of measurements collected by the data acquisition program especially developed for this purpose. Monitoring of variables such as anaerobic reactor temperature permitted the detection and prevention of several failures such as temperature shocks in the AF reactor. Besides, off-line measurements such as the alkalinity or the VFA content, together with the on-line measurements, provided immediate information about the state of the plant and the detection of several anomalies, such as organic overloads in the SBR, allowing the implementation of several fast control actions.  相似文献   

3.
Four organic loading disturbances were performed in lab-scale EGSB reactors fed with ethanol. In load disturbance 1 (LD1) and 2 (LD2), the organic loading rate (OLR) was increased between 5 and 18.5 kg COD m(-3) day(-1), through the influent ethanol concentration increase, and the hydraulic retention time decrease from 7.8 to 2.5 h, respectively. Load disturbances 3 (LD3) and 4 (LD4) were applied by increasing the OLR to 50 kg COD m(-3) day(-1) during 3 days and 16 days, respectively. The granular sludge morphology was quantified by image analysis and was related to the reactor performance, including effluent volatile suspended solids, indicator of washout events. In general, it was observed the selective washout of filamentous forms associated to granules erosion/fragmentation and to a decrease in the specific acetoclastic activity. These phenomena induced the transitory deterioration of reactor performance in LD2, LD3, and LD4, but not in LD1. Extending the exposure time in LD4 promoted acetogenesis inhibition after 144 h. The application of Principal Components Analysis determined a latent variable that encompasses a weighted sum of performance, physiological and morphological information. This new variable was highly sensitive to reactor efficiency deterioration, enclosing variations between 27% and 268% in the first hours of disturbances. The high loadings raised by image analysis parameters, especially filaments length per aggregates area (LfA), revealed that morphological changes of granular sludge, should be considered to monitor and control load disturbances in high rate anaerobic (granular) sludge bed digesters.  相似文献   

4.
A sampled delayed scheme is proposed to regulate the organic pollution level in anaerobic digestion processes by using off-line COD measurements. The proposed scheme is obtained by combining an error feedback control with a steady state estimator to track constant references and attenuate process load disturbances. The controller performance is tested experimentally for the treatment of tequila vinasses over a period of 68 days under different set-point values and several uncertain scenarios which include badly known kinetic parameters and load disturbances. Experimental results show that the COD concentration can be effectively regulated under the influence of set-point changes and high load disturbances by using only a daily off-line COD measurement, which makes the industrial application of the proposed control scheme feasible.  相似文献   

5.
《Process Biochemistry》1999,34(3):281-288
A novel hybrid bioreactor was designed to remove volatile organic compounds from wastewater and its performance was investigated. The bioreactor was composed of a biofilter section and a bubble column bioreactor section. Benzene was used as a model compound and the influent benzene was removed by immobilized cells in a bubble column bioreactor. Gas phase benzene stripped by air injection was removed in a biofilter. When the superficial air flow rate was 21.1 m h−1 (0.76 min of residence time in a biofilter), up to 2.2 ppm of benzene in gas phase was removed completely in a biofilter and the maximum removal rate was 4.71 mg day−1 cm−3. The concentration profile of benzene along the biofilter column was dependent on the superficial air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operation parameters for the hybrid bioreactor. By manipulating these operational parameters, the removal efficiency and capacity of the hybrid bioreactor could be enhanced. The organic load on the hybrid bioreactor could be shared by the biofilter and bubble column bioreactors and the fluctuation of load on the hybrid bioreactor could be absorbed by changing the distribution of benzene between biofilter and bubble column bioreactors. The maximum removal capacity of the hybrid bioreactor in the experimental range was obtained when the biofilter took 50.3% of influent benzene while 100% of removal efficiency was achieved when the biofilter took 72.3% of influent benzene.  相似文献   

6.
Tequila industries in general produce great volumes of effluents with high pollutant loads, which are discharged (untreated or partially treated) into natural receivers, thus causing severe environmental problems. In this contribution, we propose an integrated system as a first step to comply with the Mexican ecological norms and stabilize the anaerobic treatment of Tequila vinasses with main design criteria: simple and easy operation, reduce operating time and associated costs (maintenance), integrated and compact design, minimal cost of set-up, start-up, monitoring and control. This system is composed of a fully instrumented and automated lab-scale CSTR-type digester, on-line measuring devices of key variables (pH, temperature, flow rates, etc.), which are used along with off-line readings of chemical oxygen demand (COD), biogas composition, alkalinity and volatile fatty acids to guarantee the operational stability of the anaerobic digestion process. The system performance was evaluated for 200 days and the experimental results show that even under the influence of load disturbances, it is possible to reduce the COD concentration to 85% in the start-up phase and up to 95% during the normal operation phase while producing a biogas with a methane composition greater than 65%. It is also shown that in order to maintain an efficient treatment, the buffering capacity (given by the alkalinity ratio, α = intermediate alkalinity/total alkalinity) must be closely monitored.  相似文献   

7.
A novel reactor configuration was investigated for anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). An anaerobic hyper-thermophilic (68 degrees C) reactor R68 was implemented as a post-treatment step for the effluent of a thermophilic reactor R1 (55 degrees C) in order to enhance hydrolysis of recalcitrant organic matter, improve sanitation and ease the stripping of ammonia from the reactor. The efficiency of the combined system was studied in terms of methane yield, volatile solids (VS) reduction, and volatile fatty acid (VFA) production at different hydraulic retention times (HRT). A single-stage thermophilic (55 degrees C) reactor R2 was used as control. VS reduction and biogas yield of the combined system was 78-89% and 640-790 mL/g VS, respectively. While the VS reduction in the combined system was up to 7% higher than in the single-stage treatment, no increase in methane yield was observed. Shifting the HRT of the hyper-thermophilic reactor from 5 days to 3 days resulted in a drop in the methanogenic activity in the hydrolysis reactor to a minimum. Operation of R68 at HRTs of 24-48 h was sufficient to achieve high VS conversion into VFAs. Removal of pathogens was enhanced by the hyper-thermophilic post-treatment. 7% of the ammonia load was removed in the hyper-thermophilic reactor with a flow of headspace gas through the reactor equivalent to four times the biogas flow produced in reactor R1.  相似文献   

8.
The design and development of the neural network (NN)-based controller performance for the activated sludge process in sequencing batch reactor (SBR) is presented in this paper. Here we give a comparative study of various neural network (NN)-based controllers such as the direct inverse control, internal model control (IMC) and hybrid NN control strategies to maintain the dissolved oxygen (DO) level of an activated sludge system by manipulating the air flow rate. The NN inverse model-based controller with the model-based scheme represents the controller, which relies solely upon the simple NN inverse model. In the IMC, both the forward and inverse models are used directly as elements within the feedback loop. The hybrid NN control consists of a basic NN controller in parallel with a proportional integral (PI) controller. Various simulation tests involving multiple set-point changes, disturbances rejection and noise effects were performed to review the performances of these various controllers. From the results it can be seen that hybrid controller gives the best results in tracking set-point changes under disturbances and noise effects.  相似文献   

9.
Seven low-cost digesters in Costa Rica were studied to determine the potential of these systems to treat animal wastewater and produce renewable energy. The effluent water has a significantly lower oxygen demand (COD decreased from 2968 mg/L to 472 mg/L) and higher dissolved nutrient concentration (NH4-N increased by 78.3% to 82.2 mg/L) than the influent water, which increases the usefulness of the effluent as an organic fertilizer and decreases its organic loading on surface waters. On average, methane constituted 66% of the produced biogas, which is consistent with industrial digesters. Through principle component analysis, COD, turbidity, NH4-N, TKN, and pH were determined to be the most useful parameters to characterize wastewater. The results suggest that the systems have the ability to withstand fluctuations in the influent water quality. This study revealed that small-scale agricultural digesters can produce methane at concentrations useful for cooking, while improving the quality of the livestock wastewater.  相似文献   

10.
The objective of this work was to maximize the digestibility of biological sludge to elucidate the feasibility of a new sludge management strategy to recover good quality sludge for agricultural use. The combined effects of organic loading rates (from 0.7 to 2.8 g VS L−1 d−1) and the degree of disintegration by anaerobic digestion of sonicated activated sludge were discussed, and the thermal and energetic balances were evaluated. Despite low sonication inputs, sludge digestion performance improved in terms of solids degradation and biogas production depending on the soluble organic load. The biogas production by sonicated sludge was higher (up to 30%) with respect to the control. Filterability improved during digestion of sonicated sludge at medium OLR due to a significant abatement of the fines. Thermal balances indicated that sonication may be a proper system to guarantee self-sustaining WAS mesophilic digestion. Nevertheless, thickening is a pre-requisite to achieve a positive energy balance.  相似文献   

11.
Small on-site decentralized wastewater-treatment systems have been acknowledged as a key component of wastewater infrastructure worldwide. Such systems, with small water volumes, are generally based on microbial treatment and may be subjected to disturbances due to significant variations in influent quantity and quality over short periods of time. The recirculating vertical flow constructed wetland (RVFCW) has been developed as an on-site treatment system, and the aim of this study was to assess its resilience and recovery capacity upon exposure to extreme conditions such as high and low water pH, interruption of water recirculation, and high concentrations of different pollutants. The experimental setup consisted of three bench-scale RVFCWs that served as controls and three to which the disturbances were applied, one at a time. Raw and treated effluents were sampled periodically and analyzed for a variety of water-quality parameters (e.g., BOD5, and TSS). The effects of the disturbances were found to be short-lived and, in general, recovery was observed within 24 h. It was concluded that the RVFCW is a robust and reliable decentralized system for the treatment of domestic wastewater.  相似文献   

12.
A fuzzy logic control (FLC) system was developed at the Hamburg University of Applied Sciences (HAW Hamburg) for operation of biogas reactors running on energy crops. Three commercially available measuring parameters, namely pH, the methane (CH4) content, and the specific gas production rate (spec. GPR = m(3)/kg VS/day) were included. The objective was to avoid stabilization of pH with use of buffering supplements, like lime or manure. The developed FLC system can cover most of all applications, such as a careful start-up process and a gentle recovery strategy after a severe reactor failure, also enabling a process with a high organic loading rate (OLR) and a low hydraulic retention time (HRT), that is, a high throughput anaerobic digestion process with a stable pH and CH4 content. A precondition for a high load process was the concept of interval feeding, for example, with 8 h of interval. The FLC system was proved to be reliable during the long term fermentation studies over 3 years in one-stage, completely stirred tank reactors (CSTR) with acidic beet silage as mono-input (pH 3.3-3.4). During fermentation of the fodder beet silage (FBS), a stable HRT of 6.0 days with an OLR of up to 15 kg VS/m(3)/day and a volumetric GPR of 9 m(3)/m(3)/day could be reached. The FLC enabled an automatic recovery of the digester after two induced severe reactor failures. In another attempt to prove the feasibility of the FLC, substrate FBS was changed to sugar beet silage (SBS), which had a substantially lower buffering capacity than that of the FBS. With SBS, the FLC accomplished a stable fermentation at a pH level between 6.5 and 6.6, and a volatile fatty acid level (VFA) below 500 mg/L, but the FLC had to interact and to change the substrate dosage permanently. In a further experiment, the reactor temperature was increased from 41 to 50 degrees C. Concomitantly, the specific GPR, pH and CH4 dropped down. Finally, the FLC automatically enabled a complete recovery in 16 days.  相似文献   

13.
During leather manufacture, high amounts of chromium shavings, wet by‐products of the leather industry, are produced worldwide. They are stable towards temperatures of up to 110°C and enzymatic degradation, preventing anaerobic digestion in a biogas plant. Hitherto, chromium shavings are not utilized industrially to produce biogas. In order to ease enzymatic degradation, necessary to produce biogas, a previous denaturation of the native structure has to be carried out. In our projects, chromium shavings were pre‐treated thermally and mechanically by extrusion and hydrothermal methods. In previous works, we intensively studied the use of these shavings to produce biogas in batch scale and significant improvement was reached when using pre‐treated shavings. In this work, a scale‐up of the process was performed in a continuous reactor using pre‐treated and untreated chromium shavings to examine the feasibility of the considered method. Measuring different parameters along the anaerobic digestion, namely organic matter, collagen content, and volatile fatty acids content, it was possible to show that a higher methane production can be reached and a higher loading rate can be used when feeding the reactor with pre‐treated shavings instead of untreated chromium shavings, which means a more economical and efficient process in an industrial scenario.  相似文献   

14.
Anaerobic municipal wastewater treatment in developing countries has important potential applications considering their huge lack of sanitation infrastructure and their advantageous climatic conditions. At present, among the obstacles that this technology encounters, odor control and biogas utilization or disposal should be properly addressed. In fact, in most of small and medium size anaerobic municipal treatment plants, biogas is just vented, transferring pollution from water to the atmosphere, contributing to the greenhouse gas inventory. Anaerobic municipal sewage treatment should not be considered as an energy producer, unless a significant wastewater flow is treated. In these cases, more than half of the methane produced is dissolved and lost in the effluent so yield values will be between 0.08 and 0.18 N m3 CH4/kg COD removed. Diverse technologies for odor control and biogas cleaning are currently available. High pollutant concentrations may be treated with physical-chemical methods, while biological processes are used mainly for odor control to prevent negative impacts on the treatment facilities or nearby areas. In general terms, biogas treatment is accomplished by physico-chemical methods, scrubbing being extensively used for H2S and CO2 removal. However, dilution (venting) has been an extensive disposal method in some small- and medium-size anaerobic plants treating municipal wastewaters. Simple technologies, such as biofilters, should be developed in order to avoid this practice, matching with the simplicity of anaerobic wastewater treatment processes. In any case, design and specification of biogas handling system should consider safety standards. Resource recovery can be added to anaerobic sewage treatment if methane is used as electron donor for denitrification and nitrogen control purposes. This would result in a reduction of operational cost and in an additional advantage for the application of anaerobic sewage treatment. In developing countries, biogas conversion to energy may apply for the clean development mechanism (CDM) of the Kyoto Protocol. This would increase the economic feasibility of the project through the marketing of certified emission reductions (CERs).  相似文献   

15.
It is generally accepted as a fact in the biogas technology that protein-rich biomass substrates should be avoided due to inevitable process inhibition. Substrate compositions with a low C/N ratio are considered difficult to handle and may lead to process failure, though protein-rich industrial waste products have outstanding biogas generation potential. This common belief has been challenged by using protein-rich substrates, i.e. casein and precipitated pig blood protein in laboratory scale continuously stirred mesophilic fed-batch biogas fermenters. Both substrates proved suitable for sustained biogas production (0.447 L CH4/g protein oDM, i.e. organic total solids) in high yield without any additives, following a period of adaptation of the microbial community. The apparent key limiting factors in the anaerobic degradation of these proteinaceous materials were the accumulation of ammonia and hydrogen sulfide. Changes in time in the composition of the microbiological community were determined by next-generation sequencing-based metagenomic analyses. Characteristic rearrangements of the biogas-producing community upon protein feeding and specific differences due to the individual protein substrates were recognized. The results clearly demonstrate that sustained biogas production is readily achievable, provided the system is well-characterized, understood and controlled. Biogas yields (0.45 L CH4/g oDM) significantly exceeding those of the commonly used agricultural substrates (0.25-0.28 L CH4/g oDM) were routinely obtained. The results amply reveal that these high-energy-content waste products can be converted to biogas, a renewable energy carrier with flexible uses that can replace fossil natural gas in its applications. Process control, with appropriate acclimation of the microbial community to the unusual substrate, is necessary. Metagenomic analysis of the microbial community by next-generation sequencing allows a precise determination of the alterations in the community composition in the course of the process.  相似文献   

16.
云南省沼气及其综合利用发展预测与分析   总被引:1,自引:0,他引:1  
张无敌  胡云 《生态科学》1997,16(1):109-113
云南省气候适宜,农村有机废弃物丰富,是以展沼气的理想区域.沼气综合利用前景广阔,沼气发酵系统与农业相结合,能使农业的发展容能源、经济、社会和生态效益为一体,有力地促进农村经济的发展,是我国农业奔小康的理想途径之一.针对云南省沼气发展现状,在对沼气及其综合利用发展预测与分析的基础上,对云南省发展沼气提出一些看法  相似文献   

17.
This paper presents a method allowing a simple and efficient sensitivity analysis of dynamics parameters of complex whole-body human model. The proposed method is based on the ground reaction and joint moment regressor matrices, developed initially in robotics system identification theory, and involved in the equations of motion of the human body. The regressor matrices are linear relatively to the segment inertial parameters allowing us to use simple sensitivity analysis methods. The sensitivity analysis method was applied over gait dynamics and kinematics data of nine subjects and with a 15 segments 3D model of the locomotor apparatus. According to the proposed sensitivity indices, 76 segments inertial parameters out the 150 of the mechanical model were considered as not influent for gait. The main findings were that the segment masses were influent and that, at the exception of the trunk, moment of inertia were not influent for the computation of the ground reaction forces and moments and the joint moments. The same method also shows numerically that at least 90% of the lower-limb joint moments during the stance phase can be estimated only from a force-plate and kinematics data without knowing any of the segment inertial parameters.  相似文献   

18.
Proper control of apoptotic signaling is critical to immune response and development in multicellular organisms. Two tools from control engineering are applied to a mathematical model of Fas ligand signaling-induced apoptosis. Structured singular value analysis determines the volume in parameter space within which the system parameters may exist and still maintain efficacious signaling, but is limited to linear behaviors. Sensitivity analysis can be applied to nonlinear systems but is difficult to relate to performance criteria. Thus, structured singular value analysis is used to quantify performance during apoptosis rejection, ensuring that the system remains sensitive but not overly so to apoptotic stimuli. Sensitivity analysis is applied when the system has switched to the death-inducing, apoptotic steady state to determine parameters significant to maintaining the bistability. The analyses reveal that the magnitude of the death signal is fragile to perturbations in degradation parameters (failures in the ubiquitin/proteasome mechanism) while the timing of signal expression can be tuned by manipulating local parameters. Simultaneous parameter uncertainty highlights apoptotic fragility to disturbances in the ubiquitin/proteasome system. Sensitivity analysis reveals that the robust signaling characteristics of the apoptotic network is due to network architecture, and the apoptotic signaling threshold is best manipulated by interactions upstream of the apoptosome.  相似文献   

19.
Extremely low-frequency (ELF) magnetic field exposure systems are usually subject to field disturbances induced by external sources. Here, a method for designing a feedback control system for cancelling the effect of external ELF magnetic field disturbances on the magnetic field over the exposure area is presented. This method was used in the design of a feedback-controlled exposure system for an inverted microscope stage. The effectiveness of the proposed feedback control system for disturbance rejection was verified experimentally and by means of computer simulation. Bioelectromagnetics 18:299–306, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

20.
The performance of two laboratory‐scale horizontal subsurface‐flow constructed wetlands(CWs) treating artificial sewage in response to varying influent components and loads was investigated. Acidification with a pH of 3.0 was detected under an organic carbon load of 100 mg/day, which further inhibited the activity of the denitrification process. With an increase in the carbon load to 240 mg/day, the pH was significantly elevated to 6.0. However, a negative effect of sulphide as a product of sulphate reduction was observed on the removal of ammonium, the plants (Juncus effusus), and the organic carbon degradation. With a produced sulphide concentration of about 3.5 mg/L, the ammonium removal decreased from 100% to 30% under an inflow load of 100 mg/day, and the number of healthy stalks of J. effuses was reduced from about 14 000/m2 to less than 6000/m2. The removal of organic carbon decreased from 94% to 68% under an influent load of 240 mg/day, when the sulphide concentrations reached up to about 8–10 mg/L. The production of sulphide was not immediately controlled by stopping the inflow sulphate load to remove the negative effect of the sulphide toxicity, thus indicating an immobilization of the deposited reduced sulphur compounds. Moreover, the effect of a nitrate dosage on the sulphide control was also examined, but was shown to be only evident under the conditions of a low organic carbon input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号