首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is now widely accepted that actions of intracellular Ca2+ are mediated by a four-domain Ca2+-binding protein, calmodulin. Brain is especially rich in calmodulin, containing about 400 mg (24 μmol) of EGTA-extractable calmodulin per kg of brain. However, only a fraction of the above amount is required for the calmodulin-activated enzymes and most of the rest may be assigned to calmodulin-binding proteins, proteins which are apparently devoid of enzyme activities but undergo Ca2+-dependent associations with calmodulin. Several of such proteins have been recently discovered in brain. These include a heat-labile 80 K phosphodiesterase inhibitor protein (calcineurin), a heat-stable 70 K phosphodiesterase inhibitor protein, a 50 K protein, myelin basic protein, tubulin, microtubule τ (tau) factor, a spectrin-like doublet protein (240 plus 235 K) (calspectin; fodrin) and a particle-associated 155 K protein.Functions of these calmodulin-binding proteins have not been fully elucidated yet. Some proteins may be calmodulin-regulated enzymes catalyzing yet unknown biochemical reactions, e.g. a protein phosphatase activity was found for calcineurin. Some proteins may interact with contractile elements or cytoskeleton of the cell, e.g. τ factor and calspectin interacted with tubulin and F-actin, respectively and tubulin itself is a calmodulin-binding protein. So, interesting possibilities are the regulation of the functions of cytoskeleton by calmodulin through these calmodulin-binding proteins. Regulation of microtubule assembly by Ca2+-dependent binding of calmodulin to tubulin and/or τ factor and possible involvement of calspectin in the mechanism regulating axonal transport of neuronal proteins have been suggested. Thus, the exploration of the regulating functions of Ca2+/calmodulin in brain depends largely upon the further study of the properties of these calmodulin-binding proteins.  相似文献   

2.
3.
Palmitoylation is a reversible posttranslational modification which is involved in the regulation of several membrane proteins such as β2-adrenergic receptor, p21ras and trimeric G-protein α-subunits. This covalent modification could be involved in the regulation of the numerous membrane proteins present in the blood-brain barrier capillaries. The palmitoylation activity present in brain capillaries was characterized using [3H]palmitate labeling followed by chloroform methanol precipitation. Palmitate solubilizing agents such as detergents and bovine serum albumin (BSA), were used for optimizing activity. Some palmitoylated substrates were identified using [3H]palmitate labeling followed by immunoprecipitation with specific antibodies. Two optimal palmitate solubilization conditions were found, one involves cell permeabilization (Triton X-100) and the other represents a more physiological condition where membrane integrity is conserved (BSA). Sensitivity to the cysteine modifier N-ethylmaleimide and to hydrolysis, using hydroxylamine or alkaline methanolysis, indicated that palmitic acid was bound to the proteins by a thioester bond. Maximal palmitate incorporation was reached after 30 or 60 min of incubation in the presence of Triton or BSA, respectively. Depalmitoylation was observed in the presence of BSA, but not with detergents. The palmitoylation reaction was optimal at pH 8 or 9 in the presence of Triton or BSA, respectively, but palmitoylated substrates were detectable over a wide range of pH values. In the presence of Triton X-100, the addition of ATP, CoA and Mg2+ to the incubation medium increased palmitoylation by up to 80-fold. Two palmitoylated substrates were identified, a 42 kDa G-protein α subunit and p21ras. The study shows that the utilization of palmitate solubilizing agents is essential to measure in vitro palmitoylation in brain capillaries. Several palmitoylated proteins are present in the blood-brain barrier including five major substrates of 12, 21, 35, 42 and 55 kDa. It is suggested that palmitoylation could play a crucial role in the regulation of brain capillary function, since the two substrates identified in this study are known to be involved in signal transduction, vesicular transport and cell differentiation.  相似文献   

4.
5.
The microtubule associated proteins of goat brain were separated from tubulin on the basis of their thermostability and then fractionated by chromatography on Sepharose 4B column. Analysis of the fractions by SDS-Polyacrylamide gel electrophoresis and assay of their tubulin-assembly-promoting activity indicate that this activity resides primarily in the tauproteins (mol. wt. 55,000–70,000) and a class of even lower molecular weight (25,000–35,000) proteins. Electrophoresis of the microtubule associated protein fractions separated from tubulin by phosphocellulose chromatography are in agreement with the results obtained from fractionation on Sepharose 4B columns.  相似文献   

6.
7.
8.
Proteomic mapping of brain plasma membrane proteins   总被引:7,自引:0,他引:7  
Proteomics is potentially a powerful technology for elucidating brain function and neurodegenerative diseases. So far, the brain proteome has generally been analyzed by two-dimensional gel electrophoresis, which usually leads to the complete absence of membrane proteins. We describe a proteomic approach for profiling of plasma membrane proteins from mouse brain. The procedure consists of a novel method for extraction and fractionation of membranes, on-membrane digestion, diagonal separation of peptides, and high-sensitivity analysis by advanced MS. Breaking with the classical plasma membrane fractionation approach, membranes are isolated without cell compartment isolation, by stepwise depletion of nonmembrane molecules from entire tissue homogenate by high-salt, carbonate, and urea washes followed by treatment of the membranes with sublytic concentrations of digitonin. Plasma membrane is further enriched by of density gradient fractionation and protein digested on-membrane by endoproteinase Lys-C. Released peptides are separated, fractions digested by trypsin, and analyzed by LC-MS/MS. In single experiments, the developed technology enabled identification of 862 proteins from 150 mg of mouse brain cortex. Further development and miniaturization allowed analysis of 15 mg of hippocampus, revealing 1,685 proteins. More that 60% of the identified proteins are membrane proteins, including several classes of ion channels and neurotransmitter receptors. Our work now allows in-depth study of brain membrane proteomes, such as of mouse models of neurological disease.  相似文献   

9.
10.
Three peaks of calcium binding activity have been identified by the Chelex-100 calcium binding assay of the fractions from DEAE cellulose chromatography of 100,000 X g supernatant of bovine brain. These calcium binding activity peaks have been subjected to extensive purification and three novel calcium binding proteins (Mr 27,000, Mr 48,000 and Mr 63,000) and two previously characterized proteins (calcineurin and calmodulin) have been identified as components of calcium binding activity peaks. Analysis of the calcium binding properties of the novel proteins by equilibrium dialysis suggests these proteins may be intracellular calcium receptors.  相似文献   

11.
Gastrin/cholecystokinin-binding proteins were purified using the column affinity chromatography on immobilized pig tetragastrin and cholecystokinin. Immunoblotting analysis of different human tissue extracts with specific antisera obtained against gastrin-binding proteins was performed. It was found that high molecular weight polypeptide zones of 120 kDa and 35 kDa were characteristic of the brain only. Autoantisera of patients with type A gastric disease reacted with some gastrin/cholecystokinin-binding proteins in human brain and mucosa including human brain polypeptide of 120 kDa. It is supposed that there are neurospecific gastrin-binding proteins (possibly gastrin/cholecystokinin receptors in the brain).  相似文献   

12.
13.
《Proteomics》2012,12(15-16):2402-2403
  相似文献   

14.
15.
A procedure was worked out for purification and identification of calcium-binding proteins from bovine brain using Ca2+-dependent, reversible binding to a hydrophobic support, phenyl-Sepharose, as the method of isolation. These proteins could be visualized during and after their separation by running them on non-denaturing polyacrylamide gels, blotting to Zeta-probe paper, and autoradiographing with45Ca2+. About 24 polypeptides could be seen in this fraction on SDS (Laemmli) gels and about 8–10 native, Ca2+-binding proteins could be seen on non-denaturing gels and on blots of their 45Ca2+ autoradiographs. Some of these proteins could be purified further by chromatography on DEAE-Sephacel and still retain their45Ca2+-binding activity.  相似文献   

16.
Calcium binding proteins in the brain   总被引:1,自引:0,他引:1  
It is astonishing how a single ion, Ca++, can give rise to so many intracellular effects. The current explanation is that various combinations and permutations of a repertoire of calcium channels, calcium binding proteins and calcium pumps make up the individual answer of each neuronal type to the calcium signal. This review describes the major calcium binding proteins of the brain, which represent intracellular tools to decipher and transform the quantitative Ca+(+)-signal in qualitatively different cellular responses.  相似文献   

17.
R Donato 《Cell calcium》1985,6(4):343-361
In the presence of the usual 0.1 M Mes buffer, pH 6.7, mM free Ca2+ levels are required for half-maximal decrease in the rate and extent of brain microtubule protein (MTP) assembly in the absence of ox brain S-100, while microM free Ca2+ levels are sufficient in the presence of S-100. At the same pH 6.7, but in the presence of 0.12 M KCl, as low as 1.5 microM free Ca2+ is sufficient for S-100 to produce half-maximal reduction in the rate of assembly, while as high as 0.5 mM free Ca2+ is required in the absence of S-100. Similar results are obtained with rat brain S-100 (S-100b), indicating that single S-100 iso forms are equipotent in affecting the MTP assembly. At pH 7.5, MTPs are remarkably resistant to Ca2+ in the absence of S-100. In the presence of S-100, not only is the free Ca2+ concentration required for complete inhibition of assembly at least one order of magnitude smaller than that required in the absence of S-100, but significant S-100-dependent inhibition of assembly occurs in the absence of Ca2+. Under the two conditions where S-100 is particularly effective in inhibiting the assembly, i.e. at pH 6.7 in the presence of KCl and at pH 7.5, S-100 increases the disassembly rate even in the presence of microM Ca2+ levels. Our results suggest that the free Ca2+ concentration regulates the way S-100 disassembles microtubules (MTs): at microM Ca2+ levels, S-100 sequesters tubulin with concomitant increase in the disassembly rate; at mM Ca2+ levels, the S-100-Ca2+ complex probably interacts with MTs producing endwise disassembly.  相似文献   

18.
Conventional two-dimensional electrophoresis (2DE) is the main technique used for protein profiling of tissues and cells, however separation of strongly acidic, basic or highly insoluble proteins is still limited. A series of methods have been proposed to cope with this problem and the use of discontinuous gel electrophoresis in an acidic buffer system using the cationic detergent benzyldimethyl-n-hexadecylammonium chloride (16-BAC) with subsequent SDS-PAGE followed by mass spectrometry showed that results from 2DE can be complemented by this approach. It was the aim of this study to separate and identify proteins from whole mouse brain that were not demonstrated by 2DE. For this purpose samples were homogenised, soluble proteins were removed by ultracentrifugation and the water-insoluble pellet was resuspended in a mixture containing urea, 16-BAC, glycerol, pyronine Y and dithiothreitol. Electrophoresis was run in the presence of 16-BAC, the strip from the gel containing separated proteins was cut out and was re-run on SDS-PAGE. Protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. One hundred and six individual proteins represented by 187 spots were unambiguously identified consisting of 42 proteins with predicted pI values of pI>8.0, 25 with a 6.0相似文献   

19.
The content of neurospecific proteins S-100, GFA and D2 was measured in malignant cerebral tumors by electrophoresis with the use of monospecific antisera. Concomitant measurement of proteins S-100 and GFA is a more reliable diagnostic criterion as to the tumor histogenesis than study of each protein alone. D2 protein appeared to be the most stable specific marker.  相似文献   

20.
Molecular weights and metabolism of rat brain proteins   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Rats were injected with [U-14C]glucose and after various intervals extracts of whole brain proteins (and in some cases proteins from liver, blood and heart) were prepared by high-speed centrifugation of homogenates in 0.9% sodium chloride or 0.5% sodium deoxycholate. 2. The extracts were subjected to gel filtration on columns of Sephadex G-200 equilibrated with 0.9% sodium chloride or 0.5% sodium deoxycholate. 3. Extracts prepared with both solvents displayed on gel filtration a continuous range of proteins of approximate molecular weights ranging from less than 2×104 to more than 8×105. 4. The relative amount of the large proteins (mol.wt.>8×105) was conspicuously higher in brain and liver than in blood. 5. At 15min after the injection of [U-14C]glucose the smaller protein molecules (mol.wt.<2×104) were significantly radioactive, whereas no 14C could be detected in the larger (mol.wt.>2×104) protein molecules. The labelling of all protein samples was similar within 4h after injection of [U-14C]glucose. Fractionation of brain proteins into distinctly different groups by the methods used in the present work yielded protein samples with a specific radioactivity comparable with that of total brain protein. 6. No evidence could be obtained by the methods used in the present and previous work to indicate the presence of a significant amount of `metabolically inert protein' in the brain. 7. It is concluded that: (a) most or all of the brain proteins are in a dynamic state of equilibrium between continuous catabolism and anabolism; (b) the continuous conversion of glucose into protein is an important part of the maintenance of this equilibrium and of the homoeostasis of brain proteins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号