首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The calcineurin inhibitor cyclosporine A (CsA) modulates leukocyte cytokine production but may also effect nonimmune cells, including microvascular endothelial cells, which regulate the inflammatory process through leukocyte recruitment. We hypothesized that CsA would promote a proinflammatory phenotype in human intestinal microvascular endothelial cells (HIMEC), by inhibiting inducible nitric-oxide synthase (iNOS, NOS2)-derived NO, normally an important mechanism in limiting endothelial activation and leukocyte adhesion. Primary cultures of HIMEC were used to assess CsA effects on endothelial activation, leukocyte interaction, and the expression of iNOS as well as cell adhesion molecules. CsA significantly increased leukocyte binding to activated HIMEC, but paradoxically decreased endothelial expression of cell adhesion molecules (E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule-1). In contrast, CsA completely inhibited the expression of iNOS in tumor necrosis factor-alpha/lipopolysaccharide-activated HIMEC. CsA blocked p38 MAPK phosphorylation in activated HIMEC, a key pathway in iNOS expression, but failed to inhibit NFkappaB activation. These studies demonstrate that CsA exerts a proinflammatory effect on HIMEC by blocking iNOS expression. CsA exerts a proinflammatory effect on the microvascular endothelium, and this drug-induced endothelial dysfunction may help explain its lack of efficacy in the long-term treatment of chronically active inflammatory bowel disease.  相似文献   

2.
A novel inhibitor for the adhesion of monocytes to cytokine-stimulated endothelial cells, K-7174, was selected by an assay system using the cultured human monocytic cells and human endothelial cells. K-7174 inhibited the expression of vascular cell adhesion molecule-1 (VCAM-1) induced by either tumor necrosis factor alpha or interleukin-1beta, without affecting the induction of intercellular adhesion molecule-1 or E-selectin. K-7174 had no effect on the stability of VCAM-1 mRNA. Electrophoretic mobility shift assay revealed that its inhibitory effect on VCAM-1 induction was mediated by an effect on the binding to the GATA motifs in the VCAM-1 gene promoter region. K-7174 did not influence the binding to any of the following binding motifs: octamer binding protein, AP-1, SP-1, ets, NFkappaB, or interferon regulatory factor. These results suggest that the regulation of GATA binding may become a new target for anti-inflammatory drug development, acting through a mechanism independent from NFkappaB activity.  相似文献   

3.
4.
《Phytomedicine》2015,22(4):431-437
Tumor necrosis factor alpha (TNF-α) promotes the expression of adhesion molecules and induces endothelial dysfunction, a process that can lead to atherosclerosis. Green tea consumption can inhibit endothelial dysfunction and attenuate the development of arteriosclerosis. The purpose of this study was to examine whether epigallocatechin-3-gallate (EGCG) prevents TNF-α-dependent endothelial dysfunction. Here, we compared the regulatory effects of the green tea components EGCG and l-theanine against TNF-α-induced stimulation of adhesion molecule expression and apoptosis induction, which is associated with autophagy. Monocytic cell adhesion to human endothelial cells was measured using a fluorescently-labeled cell line, U-937. Caspase 3/7 activity was examined with a fluorescent probe and fluorescence microscopy. In addition, we analyzed the expression of several genes by RT-PCR. TNF-α-modulation of LC3 and VCAM1 protein levels were investigated by Western blot (WB). TNF-α induced adhesion of U937 cells to endothelial cells, and gene expression associated with adhesion molecules and apoptosis. On the other hand, EGCG and l-theanine inhibited TNF-α-induced adhesion of U937 cells to endothelial cells and inhibited increases in ICAM1, CCL2 and VCAM1 expression. Furthermore, EGCG and l-theanine inhibited TNF-α-induced apoptosis-related gene expression (e.g., CASP9), and caspase activity while inhibiting TNFα-induced VCAM1, LC3A and LC3B protein expression. Meanwhile, treatment of endothelial cells with autophagy inhibitor 3-methyladenine (3-MA) blocked EGCG-induced expression of CASP9. Together, these results indicate that EGCG can modulate TNF-α-induced monocytic cell adhesion, apoptosis and autophagy. We thus conclude that EGCG might be beneficial for inhibiting TNF-α-mediated human endothelial disorders by affecting LC3 expression-related processes.  相似文献   

5.
Ju JW  Kim SJ  Jun CD  Chun JS 《IUBMB life》2002,54(5):293-299
We investigated signaling pathways leading to tumor necrosis factor (TNF) alpha-induced intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression in chondrosarcoma cells, and determined the functional significance of their expression by examining Jurkat T cell adhesion. TNFalpha induced VCAM-1 and ICAM-1 expression and Jurkat T cell binding. Antibody blocking assay indicated that VCAM-1 mediates TNFalpha-induced Jurkat T cell adhesion. TNFalpha caused activation of mitogen-activated protein (MAP) kinase subtypes, extracellular signal-regulated protein kinase, p38 kinase, and c-jun N-terminal kinase (JNK). ICAM-1 expression was not altered by the inhibition of MAP kinases. However, VCAM-1 expression and Jurkat T cell adhesion was blocked by the inhibition of p38 kinase, whereas inhibition of JNK enhanced VCAM-1 expression and cell adhesion without any modulation of NFkappaB activation. Our results, therefore, indicate that p38 kinase mediates TNFalpha-induced VCAM-1 expression and cell adhesion, whereas JNK suppresses VCAM-1 expression that is independent to NFkappaB activation.  相似文献   

6.
Activated protein C is the first effective biological therapy for the treatment of severe sepsis. Although activated protein C is well established as a physiological anticoagulant, emerging data suggest that it also exerts anti-inflammatory and antiapoptotic effects. In this study, we investigated the ability of activated protein C to modulate monocyte apoptosis, inflammation, phagocytosis, and adhesion. Using the immortalized human monocytic cell line THP-1, we demonstrated that activated protein C inhibited camptothecin-induced apoptosis in a dose-dependent manner. The antiapoptotic effect of activated protein C requires its serine protease domain and is dependent on the endothelial cell protein C receptor and protease-activated receptor-1. In primary blood monocytes from healthy individuals, activated protein C inhibited spontaneous apoptosis. With respect to inflammation, activated protein C inhibited the production of TNF, IL-1beta, IL-6, and IL-8 by LPS-stimulated THP-1 cells. Activated protein C did not influence the phagocytic internalization of Gram-negative and Gram-positive bioparticles by THP-1 cells or by primary blood monocytes. Activated protein C also did not affect the expression of adhesion molecules by LPS-stimulated blood monocytes nor the ability of monocytes to adhere to LPS-stimulated endothelial cells. We hypothesize that the protective effect of activated protein C in sepsis reflects, in part, its ability to prolong monocyte survival in a manner that selectively inhibits inflammatory cytokine production while maintaining phagocytosis and adherence capabilities, thereby promoting antimicrobial properties while limiting tissue damage.  相似文献   

7.
Tumor necrosis factor (TNF) alpha is a critical mediator of inflammation; however, TNFalpha is rarely released alone and the "cross-talk" between different classes of inflammatory mediators is largely unexplored. Thromboxane A(2) (TXA(2)) is released during I/R injury and exerts its effects via a G protein-linked receptor (TP). In this study, we found that TXA(2) mimetics stimulate leukocyte adhesion molecule (LAM) expression on endothelium via TPbeta. The potential interaction between TXA(2) and TNFalpha in altering endothelial survival and LAM expression was examined. IBOP, a TXA(2) mimetic, attenuated TNFalpha-induced LAM expression in vitro, in a concentration-dependent manner, by preventing TNFalpha-enhanced gene expression, and also reduced TNFalpha-induced leukocyte adhesion to endothelium both in vitro and in vivo. IBOP abrogated TNFalpha-induced NFkappaB activation in endothelial cells, as determined by reduced IkappaB phosphorylation and NFkappaB nuclear translocation, by inhibiting the assembly of signaling intermediates with the intracellular domain of TNF receptors 1 and 2 in response to TNFalpha. This inhibition resulted from the Galpha(q)-mediated enhancement of STAT1 activation and was reversed by anti-STAT1 antisense oligonucleotides. TNFalpha-mediated TNFR1-FADD association and caspase 8 activation were not inhibited by IBOP co-stimulation, however, resulting in a 2.6-fold increase in endothelial cell apoptosis. By stimulating the vessel wall and inducing endothelial cell apoptosis, TXA(2), in combination with TNFalpha, may hamper the angiogenic response during inflammation or ischemia, thus reducing revascularization and tissue viability.  相似文献   

8.
In addition to an anticoagulant activity, activated protein C (APC) also exhibits anti-inflammatory and cytoprotective properties. These properties may contribute to the beneficial effect of APC in treating severe sepsis patients. A higher incidence of bleeding because of its anticoagulant function has been found to be a major drawback of APC as an effective anti-inflammatory drug. In this study, we have prepared a protein C variant in which an engineered disulfide bond between two beta-sheets stabilized the functionally critical Ca2+-binding 70-80 loop of the molecule. The 70-80 loop of this mutant no longer bound Ca2+, and the activation of the mutant by thrombin was enhanced 60-80-fold independently of thrombomodulin. The anticoagulant activity of the activated protein C mutant was nearly eliminated as determined by a plasma-based clotting assay. However, the endothelial protein C receptor- and protease-activated receptor-1-dependent protective signaling properties of the mutant were minimally altered as determined by staurosporine-induced endothelial cell apoptosis, thrombin-induced endothelial cell permeability, and tumor necrosis-alpha-mediated neutrophil adhesion and migration assays. These results suggest that the mutant lost its ability to interact with the procoagulant cofactors but not with the protective signaling molecules; thus this mutant provides an important tool for in vivo studies to examine the role of anticoagulant versus anti-inflammatory function of activated protein C.  相似文献   

9.
Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.  相似文献   

10.
The recombinant human activated protein C (rhAPC) has been reported to reduce mortality in patients with severe sepsis. An anti-apoptotic effect of rhAPC in sepsis is known, but the mechanism through which it acts on the apoptotic pathway is still unclear. Therefore, immunopositivity of the apoptosis-related proteins Bcl-2, an anti-apoptotic protein, c-myc, a proliferative protein, p-21 and p-53, two apoptotic proteins, was determined after rhAPC treatment in a mouse sepsis model. Sepsis was induced by Escherichia coli endotoxin injection. Increased neutrophil infiltration and immunoreactivity to p53 and p21 were observed in the group with sepsis and these immunoreactivities were decreased by rhAPC treatment. In the sepstic group; immunopositivity of Bcl-2 and c-myc was mild and moderate, respectively. In conclusion; p21- and p53-mediated apoptosis was increased in the sepsis model, and for the first time it has been shown that rhAPC decreases sepsis-induced apoptosis resulting from increased p21 and p53 proteins.  相似文献   

11.
12.
Visfatin has recently been identified as a novel visceral adipokine which may be involved in obesity-related vascular disorders. However, it is not known whether visfatin directly contributes to endothelial dysfunction. Here, we investigated the effect of visfatin on vascular inflammation, a key step in a variety of vascular diseases. Visfatin induced leukocyte adhesion to endothelial cells and the aortic endothelium by induction of the cell adhesion molecules, ICAM-1 and VCAM-1. Promoter analysis revealed that visfatin-mediated induction of CAMs is mainly regulated by nuclear factor-kappaB (NF-kappaB). Visfatin stimulated IkappaBalpha phosphorylation, nuclear translocation of the p65 subunit of NF-kappaB, and NF-kappaB DNA binding activity in HMECs. Furthermore, visfatin increased ROS generation, and visfatin-induced CAMs expression and NF-kappaB activation were abrogated in the presence of the direct scavenger of ROS. Taken together, our results demonstrate that visfatin is a vascular inflammatory molecule that increases expression of the inflammatory CAMs, ICAM-1 and VCAM-1, through ROS-dependent NF-kappaB activation in endothelial cells.  相似文献   

13.
Hemangioendotheliomas are categorized as intermediate-grade vascular tumors that are commonly localized in the lungs and livers. The regulation of this tumor cell''s proliferative and apoptotic mechanisms is ill defined. We recently documented an important role for Hippo pathway signaling via endothelial cell adhesion molecules in brain microvascular endothelial cell proliferation and apoptosis. We found that endothelial cells lacking cell adhesion molecules escaped from contact inhibition and exhibited abnormal proliferation and apoptosis. Here we report on the roles of adherens junction molecule modulation of survivin and the Hippo pathway in the proliferation and apoptosis of a murine hemangioendothelioma (EOMA) cell. We demonstrated reduced adherens junction molecule (CD31 and VE-cadherin) expression, increased survivin and Ajuba expression, and a reduction in Hippo pathway signaling resulting in increased proliferation and decreased activation of effector caspase 3 in postconfluent EOMA cell cultures. Furthermore, we confirmed that YM155, an antisurvivin drug that interferes with Sp1-survivin promoter interactions, and survivin small interference RNA (siRNA) transfection elicited induction of VE-cadherin, decreased Ajuba expression, increased Hippo pathway and caspase activation and apoptosis, and decreased cell proliferation. These findings support the importance of the Hippo pathway in hemangioendothelioma cell proliferation and survival and YM155 as a potential therapeutic agent in this category of vascular tumors.  相似文献   

14.
The pathogenesis of acute kidney injury (AKI) occurring due to sepsis is incompletely understood. Endothelial activation, defined as up-regulation of adhesion molecules by proinflammatory cytokines, may be central to the development of sepsis-induced AKI. Our aim was to determine levels of circulating adhesion molecules endothelial (E)-selectin, intercellular adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM), inflammatory mediators; tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), vasoactive mediators; endothelin-1 (ET-1) and nitric oxide (NO), soluble receptor for advanced glycated end products (sRAGE) and serum fetuin-A in septic AKI patients before and after antibiotic therapy. Nineteen AKI patients with sepsis and fifteen healthy controls were enrolled in this prospective study. Results revealed that 12 weeks of therapy caused amelioration of endothelial and inflammatory injuries as well as renal function markers. Moreover, the positive correlations between levels of RAGE and E-selectin (r=0.88), ET-1 (r=0.90), and TNF-α (r=0.94) and negative with NO (r=-0.75-0.95) suggest that possible interaction of RAGE and inflammation may contribute to endothelial dysfunction in septic AKI patients.  相似文献   

15.
Delayed neutrophil apoptosis and overshooting neutrophil activity contribute to organ dysfunction and subsequent organ failure in sepsis. Here, we investigated apoptotic signaling pathways that are involved in the inhibition of spontaneous apoptosis in neutrophils isolated from major trauma patients with uneventful outcome as well as in those with sepsis development. DNA fragmentation in peripheral blood neutrophils showed an inverse correlation with the organ dysfunction at d 10 after trauma in all patients, supporting the important role of neutrophil apoptosis regulation for patient's outcome. The expression of the antiapoptotic Bcl-2 protein members A1 and Mcl-1 were found to be diminished in the septic patients at d 5 and d 10 after trauma. This decrease was also linked to an impaired intrinsic apoptosis resistance, which has been previously shown to occur in neutrophils during systemic inflammation. In patients with sepsis development, delayed neutrophil apoptosis was found to be associated with a disturbed extrinsic pathway, as demonstrated by reduced caspase-8 activity and Bid truncation. Notably, the expression of Dad1 protein, which is involved in protein N-glycosylation, was significantly increased in septic patients at d 10 after trauma. Taken together, our data demonstrate that neutrophil apoptosis is regulated by both the intrinsic and extrinsic pathway, depending on patient's outcome. These findings might provide a molecular basis for new strategies targeting cell death pathways in apoptosis-resistant neutrophils during systemic inflammation.  相似文献   

16.
17.
Recent reports have demonstrated that endothelial cells are involved in vascular inflammatory injury in systemic sclerosis (SSc) and interleukin-17A (IL-17A) plays a crucial role in the pathogenesis of SSC. However, little is known about the effects of IL-17A on endothelial cell inflammation in SSC. The aim of our study was to investigate the role of IL-17A in endothelial inflammation. Here, we showed that IL-17A mRNA and protein levels were augmented in the peripheral blood and more IL-17+ lymphocytes infiltrated in the perivascular areas in the involved skin of SSC patients. SSC patient serum induced chemokine and adhesion molecule expression in HUVECs, which was blocked by IL-17A neutralization. IL-17A alone induced chemokine and adhesion molecule expression and promoted T cell-HUVEC adhesion. Extracellular signal-regulated kinase (ERK) inhibition and IL-17A neutralization prominently inhibited chemokine and adhesion molecule expression and blocked T cell-HUVEC adhesion. IL-17A derived from SSC patient serum mediated endothelial cells inflammation by up-regulating chemokines and adhesion molecules, which was blocked by ERK inhibition. These data imply that ERK signal pathway might play a key role in the progression of endothelial injury induced by IL-17A in SSC.  相似文献   

18.
Angiogenesis is one of essential components for the growth of neoplasms, including malignant gliomas. However, tumor vascularization is often poorly organized and marginally functional due to tumor structural abnormalities, inducing regional or temporal hypoxic conditions and nutritional shortages in tumor tissues. We investigated how during angiogenesis migrating endothelial cells survive in these hypoxic and reduced nutritional conditions. Human brain microvascular endothelial cells (HBMECs) underwent apoptosis and necrosis after serum withdrawal. This endothelial cell death was blocked by recombinant VEGF protein or the culture medium of U251 glioma cells exposed to hypoxia (H-CM). Hypoxic treatment increased vascular endothelial growth factor (VEGF) and tumor necrosis factor alpha (TNF-alpha) expression in U251 glioma cells. H-CM activated nuclear factor-kappaB (NFkappaB) protein and increased the gene expression of antiapoptotic factors including Bcl-2, Bcl-X(L), survivin and X-chromosome-linked inhibitor of apoptosis protein (XIAP) in endothelial cells. The survival activity of H-CM for endothelial cells was abolished by two kinds of VEGF inhibitors {Cyclopeptidic VEGF inhibitor and a VEGF receptor tyrosine kinase inhibitor (4-[(4'-chloro-2'-fluoro) phenylamino]-6, 7-dimethoxyquinazoline)} or NFkappaB inhibitors (ALLN and BAY 11-7082). These VEGF inhibitors did not block the activation of NFkappaB induced by H-CM in endothelial cells. On the contrary, TNF-alpha antagonist WP9QY enhanced the survival activity of H-CM for endothelial cells and blocked NFkappaB activation induced by H-CM under serum-starved conditions. Taken together, our data suggest that both the secretion of VEGF from glioma cells and activation of NFkappaB in endothelial cells induced by TNF-alpha are necessary for endothelial cell survival as they increase the expression of antiapoptotic genes in endothelial cells under conditions of serum starvation. These pathways may be one of the mechanisms by which angiogenesis is maintained in glioma tissues.  相似文献   

19.
Vascular endothelial growth factor (VEGF) induces adhesion molecules on endothelial cells during inflammation. Here we examined the mechanisms underlying VEGF-stimulated expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin in human umbilical vein endothelial cells. VEGF (20 ng/ml) increased expression of ICAM-1, VCAM-1, and E-selectin mRNAs in a time-dependent manner. These effects were significantly suppressed by Flk-1/kinase-insert domain containing receptor (KDR) antagonist and by inhibitors of phospholipase C, nuclear factor (NF)-kappaB, sphingosine kinase, and protein kinase C, but they were not affected by inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) 1/2 or nitric-oxide synthase. Unexpectedly, the phosphatidylinositol (PI) 3'-kinase inhibitor wortmannin enhanced both basal and VEGF-stimulated adhesion molecule expression, whereas insulin, a PI 3'-kinase activator, suppressed both basal and VEGF-stimulated expression. Gel shift analysis revealed that VEGF stimulated NF-kappaB activity. This effect was inhibited by phospholipase C, NF-kappaB, or protein kinase C inhibitor. VEGF increased VCAM-1 and ICAM-1 protein levels and increased leukocyte adhesiveness in a NF-kappaB-dependent manner. These results suggest that VEGF-stimulated expression of ICAM-1, VCAM-1, and E-selectin mRNAs was mainly through NF-kappaB activation with PI 3'-kinase-mediated suppression, but was independent of nitric oxide and MEK. Thus, VEGF simultaneously activates two signal transduction pathways that have opposite functions in the induction of adhesion molecule expression. The existence of parallel inverse signaling implies that the induction of adhesion molecule expression by VEGF is very finely regulated.  相似文献   

20.
We tested hypothesis that the interaction of fibrinogen (Fg) with intercellular adhesion molecule 1 (ICAM-1) mediates cellular adhesion and cell proliferation. Our results demonstrate that Fg : ICAM-1 ligation mediates endothelial cell survival and has an anti-apoptotic effect via activation of the MAP kinase pathway. Fg : ICAM-1 ligation in endothelial cells treated with tumor necrosis factor (TNF)alpha resulted in the hyperphosphorylation of extracellular signal-regulated kinase (ERK)-1/2 (eightfold to 10-fold) at 5-30 min. The specificity of ERK-1/2 phosphorylation was verified using the recognition peptides Fg-gamma-(117-133) and ICAM-1(8-22). ERK-1/2 hyperphosphorylation was dependent on intact cytoskeleton, as treatment with cytochalasin B and nocodazole blocked this activity. The attachment of TNFalpha-treated endothelial cells to fibrinogen or Fg-gamma-(117-133) resulted in cell survival, as assessed by an annexin V binding assay. ICAM-1(8-22) blocked the survival process. The MEK-1 inhibitor PD 98059 blocked ERK-1/2 phosphorylation, and treatment of endothelial cells with PD 98059 resulted in apoptosis even upon Fg : ICAM-1 ligation. Cells transfected with dominant-negative ERK-1/2 underwent apoptosis upon Fg : ICAM-1 ligation. Cell survival factor A1 was specifically upregulated upon adhesion of TNFalpha-stimulated endothelial cells to Fg. A1 expression was blocked by ICAM-1(8-22) and PD 98059. The Fg : ICAM-1 endothelial cell survival pathway appears to be mediated via the activation and upregulation of ERK-1/2 and A1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号