首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A protocol was designed to measure the forward mutation rate over an entire gene replicated as part of a Moloney murine leukemia virus-based vector. For these studies, the herpes simplex virus thymidine kinase (tk) gene under the control of the spleen necrosis virus U3 promoter was used as target sequence since it allows selection for either the functional or the inactivated gene. Our results indicate that after one round of retroviral replication, the tk gene is inactivated at an average rate of 0.08 per cycle of replication. Southern blotting revealed that the majority of the mutant proviruses resulted from gross rearrangements and that deletions of spleen necrosis virus and tk sequences were the most frequent cause of the gene inactivation. Sequence analysis of the mutant proviruses suggested that homologous as well as nonhomologous recombination was involved in the observed rearrangements. Some mutations consisted of simple deletions, and others consisted of deletions combined with insertions. The frequency at which these mutations occurred during one cycle of retroviral replication provides evidence indicating that Moloney murine leukemia virus-based vectors may undergo genetic rearrangement at high rates. The high rate of rearrangement and its relevance for retrovirus-mediated gene transfer are discussed.  相似文献   

2.
3.
4.
The enzymes 6-hydroxymethylpterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) catalyze sequential steps in folate biosynthesis. They are present in microorganisms but absent in mammals and therefore are especially suitable targets for antimicrobials. Sulfa drugs (sulfonamides and sulfones) currently are used as antimicrobials targeting DHPS, although resistance to these drugs is increasing. The most widely used assay that measures activity of these enzymes, to assess new inhibitors in vitro, is not amenable to automation. This article describes a simple, coupled, enzymatic spectrophotometric assay where the product of the DHPS reaction, dihydropteroate, is reduced to tetrahydropteroate by excess dihydrofolate reductase (DHFR) using the cofactor NADPH. The oxidation of NADPH is monitored at 340 nm. The activity of both HPPK and DHPS can be measured in this assay, and it has been used to measure kinetic parameters of wild-type and sulfa drug-resistant DHPS enzymes to demonstrate the utility of the assay. It is a sensitive and reproducible assay that can be readily automated and used in multiwell plates. This NADPH-coupled microplate photometric assay could be used for rapid screening of chemical libraries for novel inhibitors of folate biosynthesis as the first step in developing new antimicrobial drugs targeting the folate biosynthetic pathway.  相似文献   

5.
The correlates of protective immunity in HIV-1 infection include the endogenous production of compounds with anti-HIV-1 activity. These compounds can be produced independently of specific humoral or cellular immune responses. A model of compartmental inhibition of HIV-1 infection is the placenta, an organ that prevents transmission of HIV-1 to the fetus in the majority of HIV-1 pregnancies. Studies of this organ elucidated new compounds and mechanisms for prevention and treatment of HIV including the potent inhibitor of HIV-1, leukemia inhibitory factor (LIF). Besides coordinating the humoral and cellular immune responses, cytokines such as IFN-gamma exhibit intrinsic antiviral activity that represents the first line of defense against pathogens prior to the development of a specific immune response. The study of antiviral factors is particularly important in HIV/AIDS because of the direct destruction of the immune system by HIV-1. In this report, we focus on the identification and mechanism of endogenously produced anti-HIV factors and the overall function of these factors in the prevention and treatment of HIV/AIDS.  相似文献   

6.

Background

Murine norovirus (MNV) is recognized as the most prevalent viral pathogen in captive mouse colonies. The rapid detection assay for MNV would be a useful tool for monitoring and preventing MNV infection. A recombinase polymerase amplification (RPA) assay was established in this study to provide a solution for rapid and sensitive detection of MNV.

Results

The detection limit of the RT-RPA assay for the detection of MNV was 1?×?102 copies of RNA molecules per reaction. The assay was specific since there was no cross-reaction with other common murine viruses. In addition, the broad reactivity of the RT-RPA assay was validated using the synthesized template carrying seven point mutations among several MNV strains. The MNV RT-RPA assay could detect as few as 1?×?102 copies of the mutant per reaction, suggesting the assay could be broadly reactive against a large diversity of MNV strains. Forty eight clinical samples including 16 gastric tissue specimens, 16 cecal tissue specimens and 16 fecal specimens were tested for the validation of the new developed RT-RPA assay. The detection results of RT-RPA and RT-qPCR for clinical samples were very similar, except that a gastric tissue sample which was positive by RT-qPCR, with a RNA titer of 27 copies, was negative by RT-RPA.

Conclusions

A broadly reactive RT-RPA assay was successfully established for MNV detection.
  相似文献   

7.
8.
9.
Wolff L  Koller R  Hu X  Anver MR 《Journal of virology》2003,77(8):4965-4971
Retroviruses can be used to accelerate hematopoietic cancers predisposed to neoplastic disease by prior genetic manipulations such as in transgenic or knockout mice. The virus imparts a second neoplastic "hit," providing evidence that the initial hit is transforming. In the present study, a unique retrovirus was developed that can induce a high incidence of myeloid disease and has a broad host range. This agent is a Moloney murine leukemia virus (Mo-MuLV)-based virus that has most of the U3 region of the long terminal repeat (LTR) replaced with that of retrovirus 4070A. Like Mo-MuLV, this virus, called MOL4070LTR, is NB-tropic and not restricted by Fv1 allelles. MOL4070LTR causes myeloid leukemias in ca. 50% of mice, a finding in contrast to Mo-MuLV, which induces almost exclusively lymphoid disease. The data suggest that the LTR of the 4070A virus expands the tissue tropism of the disease to the myeloid lineage. Interesting, MCF recombinant envelope was expressed in the lymphoid but not the myeloid neoplasms of BALB/c mice. This retrovirus has the potential for accelerating myeloid disease in genetically engineered mice.  相似文献   

10.
BACKGROUND: The predominant mode of HIV-1 transmission is by heterosexual contact. The cervical/vaginal mucosa is the main port of HIV entry in women. A safe and effective topical microbicide against HIV is urgently needed to prevent sexual transmission. Hence, we evaluated griffithsin (GRFT), a 12.7 kDa carbohydrate-binding protein, both native and recombinant GRFT, potently inhibited both CXCR4-and CCR5-tropic HIV infection and transmission in vitro. METHODS: The antiviral efficacy of native and recombinant GRFT against CXCR4-and CCR5-tropic HIV and SHIV strains and SIVmac251 was evaluated by in vitro assays. We also evaluated the time course of antiviral activity and stability of GRFT in cervical/vaginal lavage as a function of pH 4-8. RESULTS: Griffithsin blocked CXCR4-and CCR5-tropic viruses at less than 1 nm concentrations and exhibited a high potency. GRFT was stable in cervical/vaginal lavage fluid and maintained a similar potency of anti-HIV activity. GRFT is not only a highly potent HIV entry inhibitor, but also prevents cell fusion and cell-to-cell transmission of HIV. CONCLUSIONS: The in vitro efficacy of GRFT revealed low cytotoxicity, high potency, rapid onset of antiviral activity and long-term stability in cervical/vaginal lavage. GRFT is an excellent candidate for anti-HIV microbicide development.  相似文献   

11.
Poly (A) containing RNA extracted from Moloney murine leukemia virus infected mouse cells was hybridized with long single-stranded complementary DNA, prepared in detergent disrupted virions. Visualization of the hybrids in the electron microscope revealed among the structures, circles and circles with tails. Measurements performed on the circular molecules revealed two major species with circumferences corresponding to 3 and 8.2 kilobases. The latter structures had identical size to circles obtained after annealing of cDNA with the viral genome, 35S RNA. Circularization of a small viral RNA (3 kb) from infected cells in the RNA-cDNA hybrids is a direct evidence that like the 35S RNA it shares similar nucleotide sequences at both the 5' and 3' ends. The presence of 5' end sequences common to the two RNA species indicates the existence of a spliced viral RNA. Furthermore, based on the circularization of viral RNA in the hybrids, we suggest a new way to quantitate and determine the lengths of spliced RNA in retrovirus infected cells.  相似文献   

12.
Specific cDNA probes of Moloney and AKR murine leukemia viruses have been prepared to characterize the proviral integration sites of these viruses in the genomes of Balb/Mo and Balb/c mice. The genetically transmitted Moloney provirus of Balb/Mo mice was detected in a characteristic Eco RI DNA fragment of 16 x 10(6) daltons. No fragment of this size was detected in tissue DNAs from Balb/c mice infected as newborns with Moloney virus. We conclude that a viral integration site, occupied in preimplantation mouse embryos, is not necessarily occupied when virus infects cells in post-natal animals. Balb/Mo and Balb/c mice do carry the AkR structural gene in an Eco RI DNA fragment of 12 x 10(6) daltons. Further restriction analysis of this fragment indicated that both mouse lines carry one AKR-type provirus. Leukemogenesis in Balb/Mo and newborn infected Balb/c mice is accompanied by reintegration of Moloney viral sequences in new chromosomal sites of tumor tissues. Part of the reintegrated Moloney viral sequences are of subgenomic size. The AKR viral sequences, however, are not found in new sites. Further restriction analysis revealed that the development of Moloney virus-induced leukemia in Balb/Mo mice does not lead to detectable structural alteration of the genetically transmitted Moloney and AKR structural genes. Possible mechanisms of the reintegration process are also discussed.  相似文献   

13.
14.
The 3'-terminal portion of the retroviral pol gene encodes a function required for the formation of the integrated provirus soon after infection of sensitive cells. To permit the isolation of large quantities of the gene product, we expressed various portions of the pol gene of Moloney murine leukemia virus (M-MuLV) as trpE fusion proteins in Escherichia coli. The proteins were found to exhibit strong DNA-binding activity after extraction and renaturation by two different procedures. In the first method, proteins separated by polyacrylamide gel electrophoresis were blotted to nitrocellulose and assayed when bound to the support. The second procedure involved the isolation of proteins in an insoluble fraction, solubilization with guanidine, and renaturation. The characteristics of the binding activity are described and compared with those of authentic viral protein.  相似文献   

15.
5'-Ectonucleotidase (NT5E) catalyzes the conversion of adenosine monophosphate to adenosine and free phosphate. The role of this ectonucleotidase and its production of adenosine are linked with immune function, angiogenesis, and cancer. NT5E activity is typically assayed either by chromatographic quantification of substrates and products using high-performance liquid chromatography (HPLC) or by quantification of free phosphate using malachite green. These methods are not suitable for robust screening assays of NT5E activity. HPLC is not readily suitable for the rapid and efficient assay of multiple samples and malachite green is highly sensitive to the phosphate-containing buffers common in various media and sample buffers. Here the development and validation of a novel high-throughput ectonucleotidase screening assay are described, which makes use of a luciferase-based assay reagent, the Promega CellTiter-Glo kit, to measure the catabolism of AMP by NT5E. This multiwell plate-based assay facilitates the screening of potential ectonucleotidase antagonists and is unaffected by the presence of contaminating phosphate molecules present in screening samples.  相似文献   

16.
We report the isolation and sequence of a cDNA clone containing part of the env message of the Moloney murine leukemia virus (MoMuLV). This clone was derived from a rat thymic lymphoma induced by MoMuLV. The AG acceptor site employed in this message is located at position 5490 in the MoMuLV genome. This splice site is detectable at the cDNA level by the creation of a novel SacI restriction site not present in the viral genome. In the -1 to -40 region, this AG acceptor site is preceded by four conserved heptanucleotides (PyXPyTPuAPy) that may function as acceptors for removal of the 5' end of the intron.  相似文献   

17.
Normal replication of Moloney murine leukemia virus (MoMLV) requires the integration of a DNA copy of the viral RNA genome into a chromosome of the host. In this work, we characterize the DNA sequences at the ends of the linear proviral precursor that are required for integration in the presence of MoMLV integration protein in vitro. We found that nine bases of MoMLV DNA at each end of a linear model substrate were sufficient for near-maximal levels of integration and that four bases of MoMLV DNA at each end were sufficient for low levels of correct integration. We also found that a 3'-terminal A residue was preferred for integration. We infer from the limited DNA sequence requirements for integration that factors in addition to DNA sequence direct integration protein to act at the ends of the viral DNA.  相似文献   

18.
The HIV envelope proteins glycoprotein 120 (gp120) and glycoprotein 41 (gp41) play crucial roles in HIV entry, therefore they are of extreme interest in the development of novel therapeutics. Studies using diverse methods, including structural biology and mutagenesis, have resulted in a detailed model for envelope-mediated entry, which consists of multiple conformations, each a potential target for therapeutic intervention. In this review, the challenges, strategies and progress to date for developing novel entry inhibitors directed at disrupting HIV gp120 and gp41 function are discussed.  相似文献   

19.
The genome of the Moloney strain of murine leukemia virus (Mo-MuLV) has been analyzed by digestion with ribonuclease T1 and separation of the digestion products by two-dimensional gel electrophoresis. Thirty large oligonucleotides isolated from such a fingerprint have been characterized. One of these oligonucleotides (number 21) was found to be present in twice the molar yield of the rest. The 30 oligonucleotides were mapped on the genome by determining their yields in various size classes of 3' terminal fragments of Mo-MuLV RNA. The physical map obtained in this way suggested that oligonucletoide 21 was present very near the 3' end of the geome as well as in another location near or at the 5' end. The genome structure suggested by these results was confirmed by analyzing oligonucleotides in Mo-Mulv RNA complementary to strong stop DNA, which is shown to be a copy of the 5' terminal 134 nucleotides of the MoMuLV genome. Some of the oligonucleotides in the RNA protected from RNAase digestion by hybridization to this DNA, including oligonucleotide 21, were present near both the 3' and 5' ends. Comparison of these with the nucleotide sequence of strong stop DNA shows that there is a terminal redundancy of 49-60 nucleotides in the Mo-MuLV genome RNA.  相似文献   

20.
M Hansen  L Jelinek  S Whiting    E Barklis 《Journal of virology》1990,64(11):5306-5316
We have studied the process of Moloney murine leukemia virus (M-MuLV) assembly by characterization of core (gag) protein mutants and analysis of wild-type (wt) gag proteins produced by cells in the presence of the ionophore monensin. Our genetic studies involved examination of linker insertion mutants of a Gag-beta-galactosidase (Gag-beta-gal) fusion protein, GBG2051, which is incorporated into virus particles when expressed in the presence of wt viral proteins. Analysis indicated that the amino-terminal two-thirds of the gag matrix domain is essential for targeting of proteins to the plasma membrane; mutant proteins localized to the cytoplasm or were trapped on intracellular membranes. Mutations through most of the coding region of the gag capsid domain generated proteins which were released from cells in membrane vesicles but not in virions. In contrast, linker insertions into p12gag or carboxy-terminal portions of the matrix or capsid coding regions did not affect assembly of fusion proteins into virus particles. Monensin, which blocks vesicular transport, inhibited gag protein intracellular transport and release from cells. Our results suggest that a significant proportion of M-MuLV myristylated gag proteins travel via vesicles to the cell surface. Specific matrix protein polypeptide regions and myristic acid modification are both necessary for appropriate gag protein transport, while capsid protein interactions appear to mediate the final phase of virion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号