首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The p19(INK4d) protein consists of five ankyrin repeats (ANK) and controls the human cell cycle by inhibiting the cyclin D-dependent kinases (CDK) 4 and 6. We investigated the folding of p19(INK4d) by urea-induced unfolding transitions, kinetic analyses of unfolding and refolding, including double-mixing experiments and a special assay for folding intermediates. Folding is a sequential two-step reaction via a hyperfluorescent on-pathway intermediate. This intermediate is present under all conditions, during unfolding, refolding and at equilibrium. The folding mechanism was confirmed by a quantitative global fit of a consistent set of equilibrium and kinetic data revealing the thermodynamics and intrinsic folding rates of the different states. Surprisingly, the N<-->I transition is much faster compared to the I<-->U transition. The urea-dependence of the intrinsic folding rates causes population of the intermediate at equilibrium close to the transition midpoint. NMR detected hydrogen/deuterium exchange and the analysis of truncated variants showed that the C-terminal repeats ANK3-5 are already folded in the on-pathway intermediate, whereas the N-terminal repeats 1 and 2 are not folded. We suggest that during refolding, repeats ANK3-ANK5 first form the scaffold for the subsequent assembly of repeats ANK1 and ANK2. The binding function of p19(INK4d) resides in the latter repeats. We propose that the graded stability and the facile unfolding of repeats 1 and 2 is a prerequisite for the down-regulation of the inhibitory activity of p19(INK4d) during the cell-cycle.  相似文献   

2.
The ankyrin repeat is one of the most common protein motifs and is involved in protein-protein interactions. It consists of 33 residues that assume a beta-hairpin helix-loop-helix fold. Mutagenesis and kinetic experiments (Phi-value analysis of the folding transition state) have shown that the tumor suppressor p16(INK4a), a four-repeat protein, unfolds sequentially starting from the two N-terminal repeats. Here, the flexibility of p16(INK4a) at room temperature and its unfolding mechanism at high temperature have been investigated by multiple molecular dynamics runs in explicit water for a total simulation time of 0.65 micros. The transition state ensemble (TSE) of p16(INK4a) was identified by monitoring both the deviation from the experimental Phi values and sudden conformational changes along the unfolding trajectories. Conformations in the TSE have a mainly unstructured second repeat whereas the other repeats are almost completely folded. A rigid-body displacement of the first repeat involving both a rotation and translation is observed in all molecular dynamics simulations at high temperature. The Trp(15), Pro(75), and Ala(76) side-chains are more buried in the TSE than the native state. The sequential unfolding starting at the second repeat is in agreement with the mutagenesis studies whereas the displacement of the first repeat and the presence of nonnative interactions at the TSE are simulation results which supplement the experimental data. Furthermore, the unfolding trajectories reveal the presence of two on-pathway intermediates with partial alpha-helical structure. Finally, on the basis of the available experimental and simulation results we suggest that in modular proteins the shift of the folding TSE toward the native structure upon reduction of the number of tandem repeats is consistent with the Hammond effect.  相似文献   

3.
Ankyrin repeat proteins (ARPs) appear to be abundant in organisms from all phyla, and play critical regulatory roles, mediating specific interactions with target biomolecules and thus ordering the sequence of events in diverse cellular processes. ARPs possess a non-globular scaffold consisting of repeating motifs named ankyrin (ANK) repeats, which stack on each other. The modular architecture of ARPs provides a new paradigm for understanding protein stability and folding mechanisms. In the present study, the stability of various C-terminal fragments of the ARP p18INK4c was investigated by all-atomic 450 ns molecular dynamics (MD) simulations in explicit water solvent. Only motifs with at least two ANK repeats made stable systems in the available timescale. All smaller fragments were unstable, readily losing their native fold and α-helical content. Since each non-terminal ANK repeat has two hydrophobic sides, we may hypothesize that at least one hydrophobic side must be fully covered and shielded from the water as a necessary, but not sufficient, condition to maintain ANK repeat stability. Consequently, at least two ANK repeats are required to make a stable ARP. Figure Structure of the p18INK4c protein (PDB entry 1IHB, chain B), which is a member of the cyclin-dependent kinase inhibitor (INK) tumor suppressor family with five ankyrin (ANK) repeat modules. The figure was generated by PyMol Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The ankyrin repeat is an abundant, 33 residue sequence motif that forms a consecutive beta-hairpin-helix-loop-helix (beta(2)alpha(2)) fold. Most ankyrin repeat proteins consist of four or more complete repeats, which provide stabilizing interactions between adjacent modules. The cyclin-dependent kinase inhibitor and tumor suppressor p16(INK4) (p16) is one of the smallest ankyrin repeat proteins with a known structure. It consists of four complete repeats plus short N and C-terminal flanking regions that are unstructured in solution. On the basis of preliminary proteolysis studies and predictions using a computer algorithm for identifying autonomous folding units, we have identified a fragment consisting of the third and fourth ankyrin repeats of p16, called p16C, that can fold independently, without the rest of the protein. Far-UV circular dichroism studies showed that p16C has a significant level of alpha-helical secondary structure, and two proline substitutions that disrupt the alpha-helical secondary structure in wild-type p16 disrupt the secondary structure in p16C. The thermal denaturation of p16C is cooperative and reversible, with a midpoint of transition at 30. 5(+/-1) degrees C. From urea-induced denaturation studies, the free energy of unfolding for p16C was estimated to be 1.7(+/-0.3) kcal/mol at 20 degrees C. (1)H-(15)N 2D NMR studies suggest that the ankyrin repeats in p16C are likely to fold into a structure similar to that of full-length p16. In order to define the minimum autonomous folding unit in p16, we have further dissected p16C into two complementary peptides, each containing a single ankyrin repeat. These peptides are unstructured in solution. Thus, p16C is the smallest ankyrin repeat module that is known to fold independently and, in general, we believe that the two-ankyrin repeat fold could be the minimum structural unit for all ankyrin repeat proteins. We further discuss the significance of p16C in protein folding and engineering.  相似文献   

5.
P19(INK4d) is a tumor suppressing protein and belongs to a family of cyclin D-dependent kinase inhibitors of CDK4 and CDK6, which play a key role in human cell cycle control. P19 comprises ten alpha-helices arranged sequentially in five ankyrin repeats forming an elongated structure. This rather simple topology, combined with its physiological function, makes p19 an interesting model protein for folding studies. Urea-induced unfolding transitions monitored by far-UV CD and phenylalanine fluorescence coincide and suggest a two-state mechanism for equilibrium unfolding. Unfolding of p19 followed by 2D (1)H-(15)N HSQC spectra revealed a third species at moderate urea concentrations with a maximum population of about 30 % near 3.2 M urea. It shows poor chemical shift dispersion, but cross-peaks emerge for some residues that are distinct from the native or unfolded state. This equilibrium intermediate either arises only at high protein concentrations (as in the NMR experiment) or has similar optical properties to the unfolded state. Stopped-flow far-UV CD experiments at various urea concentrations revealed that alpha-helical structure is formed in three phases, of which only the fastest phase (10 s(-1)) depends upon the urea concentration. The kinetic of the slowest phase (0.017 s(-1)) can be resolved by 1D real-time NMR and accelerated by cyclophilin. It is limited in rate by prolyl isomerization, and native-like ordered structure cannot form prior to this isomerization. The two fast phases lead to 83 % native protein within the dead time of the NMR experiment. In contrast to p16(INK4a), which exhibits only a marginal stability and high unfolding rates, p19 shows the expected stability for a protein of this size with a clear kinetic barrier between the unfolded and folded state. Therefore, p19 might complement the function of less stable INK4 inhibitors in cell cycle control under unfavorable conditions.  相似文献   

6.
Li J  Joo SH  Tsai MD 《Biochemistry》2003,42(46):13476-13483
IkappaBalpha, a protein composed of six ankyrin repeats, is a specific inhibitor of nuclear factor kappaB (NF-kappaB) and functions in signal transductions in many different cell types. Using both in vivo yeast two-hybrid assays and in vitro activity and binding assays, we showed that IkappaBalpha binds to cyclin-dependent kinase 4 (CDK4) specifically and inhibits its kinase activity. The potencies of binding and inhibition of IkappaBalpha are comparable to those of INK4 proteins, the specific CDK4 inhibitors that also contain ankyrin repeats. Furthermore, we showed that INK4 proteins and IkappaBalpha compete with each other for binding to CDK4. These results led us to propose a hypothesis that there is cross talk between the NF-kappaB/IkappaBalpha pathway and the p16/CDK4/Rb pathway in cells, and that IkappaBalpha could substitute for the CDK4-inhibiting function of p16, a tumor suppressor frequently inactivated in human tumors. To further understand the structural basis of IkappaBalpha-CDK binding, we used different mutants of CDK4 to show that there are notable differences between IkappaBalpha and INK4 proteins in CDK4 binding since the binding is affected differently by different CDK4 mutations. We also demonstrated that the interaction of IkappaBalpha with CDK4 is different from that with its NF-kappaB. While most of the contacts contributing to NF-kappaB binding are located within the last two C-terminal ankyrin repeats and the loop region bridging them, the first four ankyrin repeats at the N-terminus are responsible for CDK4 binding and inhibition.  相似文献   

7.
In many multi-repeat proteins, linkers between repeats have little secondary structure and place few constraints on folding or unfolding. However, the large family of spectrin-like proteins, including alpha-actinin, spectrin, and dystrophin, share three-helix bundle, spectrin repeats that appear in crystal structures to be linked by long helices. All of these proteins are regularly subjected to mechanical stress. Recent single molecule atomic force microscopy (AFM) experiments demonstrate not only forced unfolding but also simultaneous unfolding of tandem repeats at finite frequency, which suggests that the contiguous helix between spectrin repeats can propagate a cooperative helix-to-coil transition. Here, we address what happens atomistically to the linker under stress by steered molecular dynamics simulations of tandem spectrin repeats in explicit water. The results for alpha-actinin repeats reveal rate-dependent pathways, with one pathway showing that the linker between repeats unfolds, which may explain the single-repeat unfolding pathway observed in AFM experiments. A second pathway preserves the structural integrity of the linker, which explains the tandem-repeat unfolding event. Unfolding of the linker begins with a splay distortion of proximal loops away from hydrophobic contacts with the linker. This is followed by linker destabilization and unwinding with increased hydration of the backbone. The end result is an unfolded helix that mechanically decouples tandem repeats. Molecularly detailed insights obtained here aid in understanding the mechanical coupling of domain stability in spectrin family proteins.  相似文献   

8.
Cyclin-dependent kinase inhibitor p16(INK4a) is the founding member of the INK4 family of tumor suppressors capable of arresting mammalian cell division. Missense mutations in the p16(INK4a) gene (INK4a/CDKN2A/MTS1) are strongly linked to several types of human cancer. These mutations are evenly distributed throughout this small, ankyrin repeat protein and the majority of them disrupt the native secondary and/or tertiary structure, leading to protein unfolding, aggregation and loss of function. We report here the use of multiple stabilizing substitutions to increase the stability of p16(INK4a) and furthermore, to restore Cdk4 binding activity of several defective, cancer-related mutant proteins. Stabilizing substitutions were predicted using four different techniques. The three most effective substitutions were combined to create a hyperstable p16(INK4a) variant that is 1.4 kcal/mol more stable than wild-type. This engineered construct is monomeric in solution with wild-type-like secondary and tertiary structure and cyclin-dependent kinase 4 binding activity. Interestingly, these hyperstable substitutions, when combined with oncogenic mutations R24P, P81L or V126D, can significantly restore Cdk4 binding activity, despite the divergent features of each destabilizing mutation. Extensive biophysical studies indicate that the hyperstable substitutions enhance the binding activity of mutant p16 through several different mechanisms, including an increased amount of secondary structure and thermostability, reduction in exposed hydrophobic surface(s) and/or a reduced tendency to aggregate. This apparent global suppressor effect suggests that increasing the thermodynamic stability of p16 can be used as a general strategy to restore the biological activity to defective mutants of this important tumor suppressor protein.  相似文献   

9.
The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.  相似文献   

10.
Li J  Byeon IJ  Ericson K  Poi MJ  O'Maille P  Selby T  Tsai MD 《Biochemistry》1999,38(10):2930-2940
Since the structures of several ankyrin-repeat proteins including the INK4 (inhibitor of cyclin-dependent kinase 4) family have been reported recently, the detailed structures and the functional roles of the loops have drawn considerable interest. This paper addresses the potential importance of the loops of ankyrin-repeat proteins in three aspects. First, the solution structure of p18INK4C was determined by NMR, and the loop structures were analyzed in detail. The loops adapt nascent antiparallel beta-sheet structures, but the positions are slightly different from those in the crystal structure. A detailed comparison between the solution structures of p16 and p18 has also been presented. The determination of the p18 solution structure made such detailed comparisons possible for the first time. Second, the [1H,15N]HSQC NMR experiment was used to probe the interactions between p18INK4C and other proteins. The results suggest that p18INK4C interacts very weakly with dna K and glutathione S-transferase via the loops. The third aspect employed site-specific mutagenesis and functional assays. Three mutants of p18 and 11 mutants of p16 were constructed to test functional importance of loops and helices. The results suggest that loop 2 is likely to be part of the recognition surface of p18INK4C or p16INK4A for CDK4, and they provide quantitative functional contributions of specific residues. Overall, our results enhance understanding of the structural and functional roles of the loops in INK4 tumor suppressors in particular and in ankyrin-repeat proteins in general.  相似文献   

11.
The ANK repeat: a ubiquitous motif involved in macromolecular recognition   总被引:26,自引:0,他引:26  
Many proteins rely on stable, noncovalent interactions with other macromolecules to perform their function. The identification of a repeated sequence motif, the ANK repeat, in diverse proteins whose common function involves binding to other proteins indicates one way nature may achieve a wide range of protein-protein interactions. In this article, we describe evidence that these ANK repeats are involved in the specific recognition of proteins and possibly DNA, and present a model for the folding of the motif.  相似文献   

12.
Tetratricopeptide repeats (TPRs) are a class of all alpha-helical repeat proteins that are comprised of 34-aa helix-turn-helix motifs. These stack together to form nonglobular structures that are stabilized by short-range interactions from residues close in primary sequence. Unlike globular proteins, they have few, if any, long-range nonlocal stabilizing interactions. Several studies on designed TPR proteins have shown that this modular structure is reflected in their folding, that is, modular multistate folding is observed as opposed to two-state folding. Here we show that TPR multistate folding can be suppressed to approximate two-state folding through modulation of intrinsic stability or extrinsic environmental variables. This modulation was investigated by comparing the thermodynamic unfolding under differing buffer regimes of two distinct series of consensus-designed TPR proteins, which possess different intrinsic stabilities. A total of nine proteins of differing sizes and differing consensus TPR motifs were each thermally and chemically denatured and their unfolding monitored using differential scanning calorimetry (DSC) and CD/fluorescence, respectively. Analyses of both the DSC and chemical denaturation data show that reducing the total stability of each protein and repeat units leads to observable two-state unfolding. These data highlight the intimate link between global and intrinsic repeat stability that governs whether folding proceeds by an observably two-state mechanism, or whether partial unfolding yields stable intermediate structures which retain sufficient stability to be populated at equilibrium.  相似文献   

13.
Small globular proteins have many contacts between residues that are distant in primary sequence. These contacts create a complex network between sequence-distant segments of secondary structure, which may be expected to promote the cooperative folding of globular proteins. Although repeat proteins, which are composed of tandem modular units, lack sequence-distant contacts, several of considerable length have been shown to undergo cooperative two-state folding. To explore the limits of cooperativity in repeat proteins, we have studied the unfolding of YopM, a leucine-rich repeat (LRR) protein of over 400 residues. Despite its large size and modular architecture (15 repeats), YopM equilibrium unfolding is highly cooperative, and shows a very strong dependence on the concentration of urea. In contrast, kinetic studies of YopM folding indicate a mechanism that includes one or more transient intermediates. The urea dependence of the folding and unfolding rates suggests a relatively small transition state ensemble. As with the urea dependence, we have found an extreme dependence of the free energy of unfolding on the concentration of salt. This salt dependence likely results from general screening of a large number of unfavorable columbic interactions in the folded state, rather than from specific cation binding.  相似文献   

14.
Full-consensus designed ankyrin repeat proteins were designed with one to six identical repeats flanked by capping repeats. These proteins express well in Escherichia coli as soluble monomers. Compared to our previously described designed ankyrin repeat protein library, randomized positions have now been fixed according to sequence statistics and structural considerations. Their stability increases with length and is even higher than that of library members, and those with more than three internal repeats are resistant to denaturation by boiling or guanidine hydrochloride. Full denaturation requires their heating in 5 M guanidine hydrochloride. The folding and unfolding kinetics of the proteins with up to three internal repeats were analyzed, as the other proteins could not be denatured. Folding is monophasic, with a rate that is nearly identical for all proteins (∼ 400-800 s− 1), indicating that essentially the same transition state must be crossed, possibly the folding of a single repeat. In contrast, the unfolding rate decreases by a factor of about 104 with increasing repeat number, directly reflecting thermodynamic stability in these extraordinarily slow denaturation rates. The number of unfolding phases also increases with repeat number. We analyzed the folding thermodynamics and kinetics both by classical two-state and three-state cooperative models and by an Ising-like model, where repeats are considered as two-state folding units that can be stabilized by interacting with their folded nearest neighbors. This Ising model globally describes both equilibrium and kinetic data very well and allows for a detailed explanation of the ankyrin repeat protein folding mechanism.  相似文献   

15.
16.
Although the folding of alpha-helical repeat proteins has been well characterized, much less is known about the folding of repeat proteins containing beta-sheets. Here we investigate the folding thermodynamics and kinetics of the leucine-rich repeat (LRR) domain of Internalin B (InlB), an extracellular virulence factor from the bacterium Lysteria monocytogenes. This domain contains seven tandem leucine-rich repeats, of which each contribute a single beta-strand that forms a continuous beta-sheet with neighboring repeats, and an N-terminal alpha-helical capping motif. Despite its modular structure, InlB folds in an equilibrium two-state manner, as reflected by the identical thermodynamic parameters obtained by monitoring its sigmoidal urea-induced unfolding transition by different spectroscopic probes. Although equilibrium two-state folding is common in alpha-helical repeat proteins, to date, InlB is the only beta-sheet-containing repeat protein for which this behavior is observed. Surprisingly, unlike other repeat proteins exhibiting equilibrium two-state folding, InlB also folds by a simple two-state kinetic mechanism lacking intermediates, aside from the effects of prolyl isomerization on the denatured state. However, like other repeat proteins, InlB also folds significantly more slowly than expected from contact order. When plotted against urea, the rate constants for the fast refolding and single unfolding phases constitute a linear chevron that, when fitted with a kinetic two-state model, yields thermodynamic parameters matching those observed for equilibrium folding. Based on these kinetic parameters, the transition state is estimated to comprise 40% of the total surface area buried upon folding, indicating that a large fraction of the native contacts are formed in the rate-limiting step to folding.  相似文献   

17.
Manipulation of protein solubility is important for many aspects of protein design and engineering. Previously, we designed a series of consensus ankyrin repeat proteins containing one, two, three and four identical repeats (1ANK, 2ANK, 3ANK and 4ANK). These proteins, particularly 4ANK, are intended for use as a universal scaffold on which specific binding sites can be constructed. Despite being well folded and extremely stable, 4ANK is soluble only under acidic conditions. Designing interactions with naturally occurring proteins requires the designed protein to be soluble at physiological pH. Substitution of six leucines with arginine on exposed hydrophobic patches on the surface of 4ANK resulted in increased solubility over a large pH range. Study of the pH dependence of stability demonstrated that 4ANK is one of the most stable ankyrin repeat proteins known. In addition, analogous leucine to arginine substitutions on the surface of 2ANK allowed the partially folded protein to assume a fully folded conformation. Our studies indicate that replacement of surface-exposed hydrophobic residues with positively charged residues can significantly improve protein solubility at physiological pH.  相似文献   

18.
The folding mechanisms of two proteins in the family of intracellular lipid binding proteins, ileal lipid binding protein (ILBP) and intestinal fatty acid binding protein (IFABP), were examined. The structures of these all-beta-proteins are very similar, with 123 of the 127 amino acids of ILBP having backbone and C(beta) conformations nearly identical to those of 123 of the 131 residues of IFABP. Despite this structural similarity, the sequences of these proteins have diverged, with 23% sequence identity and an additional 16% sequence similarity. The folding process was completely reversible, and no significant concentrations of intermediates were observed by circular dichroism or fluorescence at equilibrium for either protein. ILBP was less stable than IFABP with a midpoint of 2. 9 M urea compared to 4.0 M urea for IFABP. Stopped-flow kinetic studies showed that both the folding and unfolding of these proteins were not monophasic, suggesting that either multiple paths or intermediate states were present during these processes. Proline isomerization is unlikely to be the cause of the multiphasic kinetics. ILBP had an intermediate state with molten globule-like spectral properties, whereas IFABP had an intermediate state with little if any secondary structure during folding and unfolding. Double-jump experiments showed that these intermediates appear to be on the folding path for each protein. The folding mechanisms of these proteins were markedly different, suggesting that the different sequences of these two proteins dictate different paths through the folding landscape to the same final structure.  相似文献   

19.
Requirements for cell cycle arrest by p16INK4a   总被引:12,自引:0,他引:12  
Analysis of tumor-derived mutations has led to the suggestion that p16INK4a, cyclin D1, cdk4, and the retinoblastoma protein (pRB) are components of a regulatory pathway that is inactivated in most tumor cells. Cell cycle arrest induced by p16INK4a, an inhibitor of cyclin D-dependent kinases, requires pRB, and it has been proposed that this G1 arrest is mediated by pRB-E2F repressor complexes. By comparing the properties of primary mouse embryonic fibroblasts specifically lacking pRB-family members, we find that pRB is insufficient for a p16INK4a-induced arrest. In addition to pRB, a second function provided by either p107 or p130, two pRB-related proteins, is required for p16INK4a to block DNA synthesis. We infer that p16INK4a-induced arrest is not mediated exclusively by pRB, but depends on the nonredundant functions of at least two pRB-family members.  相似文献   

20.
p18(INK4c) is a member of the INK4 family of proteins that regulate the G(1) to S cell cycle transition by binding to and inhibiting the pRb kinase activity of cyclin-dependent kinases 4 and 6. The p16(INK4a) member of the INK4 protein family is altered in a variety of cancers and structure-function studies of the INK4 proteins reveal that the vast majority of missense tumor-derived p16(INK4a) mutations reduce protein thermodynamic stability. Based on this observation, we used p18(INK4c) as a model to test the proposal that INK4 proteins with increased stability might have enhanced cell cycle inhibitory activity. Structure-based mutagenesis was used to prepare p18(INK4c) mutant proteins with a predicted increase in stability. Using this approach, we report the generation of three mutant p18(INK4C) proteins, F71N, F82Q, and F92N, with increased stability toward thermal denaturation of which the F71N mutant also showed an increased stability to chemical denaturation. The x-ray crystal structures of the F71N, F82Q, and F92N p18INK4C mutant proteins were determined to reveal the structural basis for their increased stability properties. Significantly, the F71N mutant also showed enhanced CDK6 interaction and cell cycle inhibitory activity in vivo, as measured using co-immunoprecipitation and transient transfection assays, respectively. These studies show that a structure-based approach to increase the thermodynamic stability of INK4 proteins can be exploited to prepare more biologically active molecules with potential applications for the development of molecules to treat p16(INK4a)-mediated cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号