首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The 14-3-3 proteins are binding proteins that have been shown to interact with a wide array of enzymes involved in primary biosynthetic and energy metabolism in plants. In most cases, the significance of binding of the 14-3-3 protein is not known. However, most of the interactions are phosphorylation-dependent and most of the known binding partners are found in the cytosol, while some may also be localized to plastids and mitochondria. In this review, we examine the factors that may regulate the binding of 14-3-3s to their target proteins, and discuss their possible roles in the regulation of the activity and proteolytic degradation of enzymes involved in primary carbon and nitrogen metabolism.  相似文献   

2.
3.
Far-Western overlays of soluble extracts of cauliflower revealed many proteins that bound to digoxygenin (DIG)-labelled 14-3-3 proteins. Binding to DIG-14-3-3s was prevented by prior dephosphorylation of the extract proteins or by competition with 14-3-3-binding phosphopeptides, indicating that the 14-3-3 proteins bind to phosphorylated sites. The proteins that bound to the DIG-14-3-3s were also immunoprecipitated from extracts with anti-14-3-3 antibodies, demonstrating that they were bound to endogenous plant 14-3-3 proteins. 14-3-3-binding proteins were purified from cauliflower extracts, in sufficient quantity for amino acid sequence analysis, by affinity chromatography on immobilised 14-3-3 proteins and specific elution with a 14-3-3-binding phosphopeptide. Purified 14-3-3-binding proteins included sucrose–phosphate synthase, trehalose-6-phosphate synthase, glutamine synthetases, a protein (LIM17) that has been implicated in early floral development, an approximately 20 kDa protein whose mRNA is induced by NaCl, and a calcium-dependent protein kinase that was capable of phosphorylating and rendering nitrate reductase (NR) sensitive to inhibition by 14-3-3 proteins. In contrast to the phosphorylated NR-14-3-3 complex which is activated by dissociation with 14-3-3-binding phosphopeptides, the total sugar–phosphate synthase activity in plant extracts was inhibited by up to 40% by a 14-3-3-binding phosphopeptide and the phosphopeptide-inhibited activity was reactivated by adding excess 14-3-3 proteins. Thus, 14-3-3 proteins are implicated in regulating several aspects of primary N and C metabolism. The procedures described here will be valuable for determining how the phosphorylation and 14-3-3-binding status of defined target proteins change in response to extracellular stimuli.  相似文献   

4.
P Wirsching  M H O'Leary 《Biochemistry》1985,24(26):7602-7606
(E)-3-Cyanophosphoenolpyruvate has been synthesized by reacting dimethyl chlorophosphate with the potassium enolate of ethyl cyanopyruvate. The resulting trialkyl ester was deesterified with bromotrimethylsilane followed by potassium hydroxide. Subsequent treatment with Dowex-50-H+ resin and cyclohexylamine afforded the tricyclohexylammonium salt; only the E geometric isomer was obtained. This compound can be photoisomerized to a 70:30 E:Z mixture. (E)-3-Cyanophosphoenolpyruvate is an excellent competitive inhibitor of phosphoenolpyruvate carboxylase [KI(Mn2+) = 16 microM, KI(Mg2+) = 1360 microM], pyruvate kinase [KI(Mn2+) = 0.085 microM, KI(Mg2+) = 0.76 microM], and enolase [KI(Mn2+) = 360 microM, KI(Mg2+) = 280 microM]. The compound is a substrate for pyruvate kinase (Vmax approximately 1% of phosphoenolpyruvate rate), but not for the other two enzymes. No irreversible inactivation is observed with phosphoenolpyruvate carboxylase of pyruvate kinase.  相似文献   

5.
An electron microscope cytochemical technique was used to determine the subcellular distribution of marker enzymes in Fusidium sp. 100-3 cells. Nucleoside diphosphatase was found in the nuclear envelope and intracytoplasmic membrane segment. Thiamine pyrophosphatase was found to be associated with the mesosomes. Cytochrome c (oxidase) activity was found only in the mitochondrial cristae. Strong alkaline phosphatase activity was present in the vacuole; in addition, the enzyme activity was discretely dispersed throughout the cytoplasm without any association with any membrane material. The overall characteristics of the cell ultrastructure and subcellular enzyme distribution of Fusidium sp. 100-3 cells compare fairly well with those of a fungal cell. But there are considerable differences from the characteristics of higher eucaryotic cells. Detailed data on the marker enzymes distribution in a variety of fungal cells are not available. Therefore, it is not possible to conclude whether the marker enzyme distribution of Fusidium sp. 100-3 cells is unique or is typical of any fungal organism. Detailed studies of cell ultrastructure of and marker enzyme distribution in minute fungal cells and their comparison to the ultrastructure of and marker enzyme distribution in other fungal organisms may be helpful in understanding the phylogenetic and ontogenic development of subcellular organelles.  相似文献   

6.
REBASE - restriction enzymes and methylases.   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

7.
8.
Antiserum prepared against protocatechuate 3, 4-dioxygenase from Pseudomonas aeruginosa forms precipitin bands without spurs with isofunctional enzymes from different strains of the fluorescent pseudomonads on immunodiffusion plates. Catalytic activity of the isofunctional enzymes was inhibited by an immunoglobulin fraction prepared against the enzyme from organisms of the same genus and not from different genera.  相似文献   

9.
Adult male and female Haemonchus contortus were homogenized and subjected to differential centrifugation. The crude, high-speed, supernatant fraction contained more than 95% of the glutamate dehydrogenase activity. The enzyme was purified through use of DEAE-cellulose columns and sucrose density gradient centrifugation. The enzyme from both crude and purified preparations was detected as a single band of activity following starch or polyacrylamide-gel electrophoresis. The Haemonchus enzyme was compared with ovine and bovine liver glutamate dehydrogenases. The three enzymes were similar in molecular size, Michaelis constants, and pH optimums but differed in electrophoretic mobility in polyacrylamide-gels, activity with NADP as coenzyme, and effect of AMP and ADP on activity. Sheep anti-Haemonchus glutamate dehydrogenase serum inhibited Haemonchus glutamate dehydrogenase, but did not inhibit the ovine or bovine enzymes.  相似文献   

10.
The pea leaf chloroplastic and cytoplasmic forms of aldolase are very similar in structure. The subunit molecular weights determined by polyacrylamide gel electrophoresis in sodium dodecyl sulfate are approximately 37.000. Both aldolases appear to terminate in the same sequence, SerAlaTyrCOOH, and the amino-terminal sequence H2NGlySerTyrAla was obtained for each. The previously reported differences in kinetic properties and in isoelectric points of the two pea leaf enzymes probably are the consequence of minor differences in amino acid composition or conformation.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Covalent attachment of ubiquitin to other intracellular proteins is essential for many physiological processes in eukaryotes, including selective protein degradation. Selection of proteins for ubiquitin conjugation is accomplished, in part, by a group of enzymes designated E2s or ubiquitin-conjugating enzymes (UBCs). At least six types of E2s have been identified in the plantArabidopsis thaliana; each type is encoded by a small gene family. Previously, we described the isolation and characterization of two three-member gene families, designatedAtUBC1-3 andAtUBC4-6, encoding two of these E2 types. Here, we investigated the expression patterns, of theAtUBC1-3 andAtUBC4-6 genes by the histochemical analysis of transgenicArabidopsis containing the corresponding promoters fused to the -glucuronidase-coding region. Staining patterns showed that these genes are active in many stages of development and some aspects of cell death, but are not induced by heat stress. Within the two gene families, individual members exhibited both overlapping and complementary expression patterns, indicating that at least one member of each gene family is expressed in most cell types and at most developmental stages. Different composite patterns of expression were observed between theAtUBC1-3 andAtUBC4-6 families, suggesting distinct biochemical and/or physiological functions for the encoded E2s inArabidopsis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号