首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

2.
Protein kinase C (PKC) has been known to play an important role in ischemic preconditioning (IP). This study was designed to examine whether the translocation of PKC is associated with the cardioprotective effects of IP in vivo on infarct size and ventricular arrhythmias in a rat model.Using anesthetized rats, heart rate, systolic blood pressure, infarct size and ventricular arrhythmias during 45 min of coronary occlusion were measured. PKC activity was assayed in both the cytosolic and cell membrane fraction . Brief 3-min periods of ischemia followed by 10 min of reperfusion were used to precondition the myocardium. Calphostin C was used to inhibit PKC.Infarct size was significantly reduced by IP (68.1 (2.5)%, mean (S.E.) vs. 45.2 (3.4)%, p < 0.01). The reduction in infarct size by IP was abolished by pretreatment with calphostin C. The total number of ventricular premature complex (VPC) during 45 min of coronary occlusion was reduced by IP (1474 (169) beats/45 min vs. 256 (82) beats/45 min, p < 0.05). The reduction the total number of VPC induced by IP was abolished by the administration of calphostin C before the episode of brief ischemia. The same tendency was observed in the duration of ventricular tachycardia and the incidence of ventricular fibrillation. PKC activity in the cell membrane fraction transiently increased immediately after IP (100 vs. 142%, p < 0.01) and returned to baseline 15 min after IP. Pretreatment with calphostin C prevented the translocation of PKC.The translocation of PKC plays an important role in the cardioprotective effect of IP on infarct size and ventricular arrhythmias in anesthetized rats.  相似文献   

3.
Sevoflurane postconditioning has been proven to protect the hearts against ischemia/reperfusion injury, manifested mainly by improved cardiac function, reduced myocardial specific biomarker release, and decreased infarct size. This study is to observe the effects of sevoflurane postconditioning on reperfusion-induced ventricular arrhythmias and reactive oxygen species generation in Langendorff perfused rat hearts. Compared with the unprotected hearts subjected to 25 min of global ischemia followed by 30 min of reperfusion, exposure of 3% sevoflurane during the first 15 min of reperfusion significantly improved cardiac function, reduced cardiac troponin I release, decreased infarct size and attenuated reperfusion-induced ventricular arrhythmia. Further analysis on arrhythmia during the 30 min of reperfusion showed that, sevoflurane postconditioning decreased both the duration and incidence of ventricular tachycardia and ventricular fibrillation. In the meantime, intracellular malondialdehyde and reactive oxygen species levels were also reduced. These above results demonstrate that sevoflurane postconditioning protects the hearts against ischemia/reperfusion injury and attenuates reperfusion-induced arrhythmia, which may be associated with the regulation of lipid peroxidation and reactive oxygen species generation.  相似文献   

4.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.  相似文献   

5.
NADH increases during ischemia because O(2) shortage limits NADH oxidation at the electron transport chain. Ischemic (IPC) and anesthetic preconditioning (APC) attenuate cardiac reperfusion injury. We examined whether IPC and APC similarly alter NADH, i.e., mitochondrial metabolism. NADH fluorescence was measured at the left ventricular wall of 40 Langendorff-prepared guinea pig hearts. IPC was achieved by two 5-min periods of ischemia and APC by exposure to 0.5 or 1.3 mM sevoflurane for 15 min, each ending 30 min before 30 min of global ischemia. During ischemia, NADH initially increased in nonpreconditioned control hearts and then gradually declined below baseline levels. This increase in NADH was lower after APC but not after IPC. The subsequent decline was slower after IPC and APC. On reperfusion, NADH was less decreased after IPC or APC, mechanical and metabolic functions were improved, and infarct size was lower compared with controls. Our results indicate that IPC and APC cause distinctive changes in mitochondrial metabolism during ischemia and thus lead to improved function and tissue viability on reperfusion.  相似文献   

6.
目的:研究雷米普利对糖尿病大鼠心肌缺血/再灌注损伤的保护作用,并从超微结构的角度初步探讨其作用机制。方法:链脲佐菌素致糖尿病大鼠被随机分为3组(n=16):缺血/再灌注(I/R)、缺血预适应(IPC)和雷米普利(RAM)组。RAM组每天用雷米普利(1mg/kg)灌胃,I/R和IPC组用等体积生理盐水灌胃。4周后各组动物均经历心肌缺血/再灌注损伤,IPC组于缺血前行心肌缺血预适应。连续监测心电图变化,测定心肌梗死面积,光、电镜下观察心肌形态学改变。结果:与I/R组比较,RAM及IPC组缺血期心脏ST-段抬高幅度降低,室早出现时间推迟,持续时间缩短,室速、室颤发生率降低,心肌梗死面积缩小,形态学观察心肌损伤减轻,心肌纤维及线粒体特征性结构保持清晰,血管通畅,内皮损伤减轻。结论:连续4周使用RAM对实验性糖尿病大鼠具有与IPC相似的心脏保护效应,机制可能与保护心肌细胞及线粒体、改善内皮功能等有关。  相似文献   

7.
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α2-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α2-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α2-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α2-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α2-adrenergic receptor stimulation.  相似文献   

8.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

9.
We examined cardioprotective effect of chronic hypoxia and the time course of its recovery under normoxic conditions. Adult male Wistar rats were exposed to intermittent hypobaric hypoxia (7000 m, 8 h/day, 35 exposures) and susceptibility of their hearts to ischemia-induced ventricular arrhythmias and myocardial infarction was evaluated in anesthetized open-chest animals subjected to 30-min coronary artery occlusion and 4-h reperfusion on the day after the last hypoxic exposure and at 7, 35 and 90 days of normoxic recovery. The infarct size was reduced from 69.2+/-1.7 % of the area at risk in normoxic controls to 48.0+/-2.2 % in the chronically hypoxic group and to 61.6+/-2.3 % in the group recovered for 7 days. This residual protection persisted for at least 35 days of normoxic recovery but it was absent after 90 days. In contrast to the infarct size-limitation, the antiarrhythmic protection disappeared already during the first week; the incidence of ventricular fibrillation was even significantly increased 7 and 90 days after the last hypoxic exposure. In conclusion, the duration of cardioprotection induced by chronic hypoxia differs markedly, depending on the end point of ischemia/reperfusion injury examined. Whereas the increased tolerance to lethal myocardial injury persists for at least 5 weeks after the termination of hypoxia, the antiarrhythmic protection rapidly vanishes, being replaced with transient proarrhythmic effect.  相似文献   

10.
The accumulation of oxygen free radicals and activation of neutrophils are strongly implicated as pathophysiological mechanisms mediating myocardial ischemia/reperfusion injury. Heme oxygenase-1 (HO-1) has been reported to play a protective role in oxidative tissue injuries. In this study, the cardioprotective activity of tetramethylpyrazine (TMP), an active ingredient of Chinese medicinal herb Ligusticum wallichii Franchat, was evaluated in an open-chest anesthetized rat model of myocardial ischemia/reperfusion injury. Pretreatment with TMP (5 and 10 mg/kg, i.v.) before left coronary artery occlusion significantly suppressed the occurrence of ventricular fibrillation. After 45 min of ischemia and 1 h of reperfusion, TMP (5 and 10 mg/kg) caused a significant reduction in infarct size and induced HO-1 expression in ischemic myocardium. The HO inhibitor ZnPP (50 μg/rat) markedly reversed the anti-infarct action of TMP. Superoxide anion production in ischemic myocardium after 10 min reperfusion was inhibited by TMP. Furthermore, TMP (200 and 500 μM) significantly suppressed fMLP (800 nM)-activated human neutrophil migration and respiratory burst. In conclusion, TMP suppresses ischemia-induced ventricular arrhythmias and reduces the infarct size resulting from ischemia/reperfusion injury in vivo. This cardioprotective activity of TMP may be associated with its antioxidant activity via induction of HO-1 and with its capacity for neutrophil inhibition.  相似文献   

11.
We postulated that anesthetic preconditioning (APC) is triggered by reactive oxygen/nitrogen species (ROS/RNS). We used the isolated guinea pig heart perfused with L-tyrosine, which reacts with ROS and RNS to form strong oxidants, principally peroxynitrite (ONOO(-)), and then forms fluorescent dityrosine. ROS scavengers superoxide dismutase, catalase, and glutathione (SCG) and NO. synthesis inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) were given 5 min before and after sevoflurane preconditioning stimuli. Drugs were washed out before 30 min of ischemia and 120 min of reperfusion. Groups were control (nontreated ischemia control), APC (two, 2-min periods of perfusion with 0.32 +/- 0.02 mM of sevoflurane; separated by a 6-min period of perfusion without sevoflurane), SCG, APC + SCG, L-NAME, and APC + L-NAME. Effluent dityrosine at 1 min reperfusion was 56 +/- 6 (SE), 15 +/- 5, 40 +/- 5(++), 39 +/- 4(++), 35 +/- 4(++) , and 33 +/- 5(++) units ((++)P< 0.05 vs. APC), respectively; left ventricular pressure (%baseline) at 60 min of reperfusion was 30 +/- 5(++), 60 +/- 4, 35 +/- 5(++), 37 +/- 5(++), 44 +/- 4, and 47 +/- 4; and infarct size (%total heart weight) was 50 +/- 5(++), 19 +/- 2, 48 +/- 3(++), 46 +/- 4(++), 42 +/- 4(++), and 45 +/- 2(++). Thus APC is initiated by ROS as shown by improved function, reduced infarct size, and reduced dityrosine on reperfusion; protective and ROS/RNS-reducing effect of APC were attenuated when bracketed by ROS scavengers or NO* inhibition.  相似文献   

12.
Hu CP  Peng J  Xiao L  Ye F  Deng HW  Li YJ 《Regulatory peptides》2002,107(1-3):137-143
In the present study, we examined whether age-related reduction in cardioprotection of intestinal ischemic preconditioning is related to stimulation of the release and synthesis of calcitonin gene-related peptide (CGRP) in rats. Ischemia-reperfusion injury was induced by a 45-min coronary artery occlusion and 180-min reperfusion, and ischemic preconditioning was induced by six cycles of 4-min ischemia and 4-min reperfusion of the small intestine. The serum concentration of creatine kinase, infarct size, the expression of CGRP isoforms (alpha- and beta-CGRP) mRNA in lumbar dorsal root ganglia and CGRP concentration in plasma were measured. Pretreatment with intestinal ischemic preconditioning for 24 h significantly reduced infarct size and creatine kinase release concomitantly with a significant increase in the expression of alpha-CGRP mRNA, but not beta-CGRP mRNA, and plasma concentrations of CGRP at 6 months of age but not at 24 months of age. These results suggest that the delayed cardioprotective effect of intestinal ischemic preconditioning is decreased in senescent rats, and the age-related change is related to reduction of the synthesis and release of alpha-CGRP.  相似文献   

13.
Turan NN  Basgut B  Aypar E  Ark M  Iskit AB  Cakici I 《Life sciences》2008,82(17-18):928-933
Short ischemic episodes increase tolerance against subsequent severe ischemia in the heart. Nitropropionate (3-NP), an irreversible inhibitor of succinic dehydrogenase of the mitochondrial complex II, was shown to induce protective effect against ischemic brain injury. The aim of this study was to investigate the possible protective effect of 3-NP on regional ischemia in preconditioned rat heart in vivo. Hearts were assigned into three groups: first, in order to induce ischemic preconditioning (IP) 5 min ischemia separated by 10 min reperfusion protocol was used; second, non-preconditioned group was used as control; and third, 3-NP (20 mg/kg, i.p.) was injected 3 h before the surgical procedure in order to induce chemical preconditioning. In all these groups, 30 min regional ischemia was followed by 60 min reperfusion. Infarct size, bax expression, number of ventricular ectopic beats (VEB), duration of ventricular tachycardia (VT) and ventricular fibrillation (VF) were significantly decreased in ischemic preconditioning and 3-NP pretreatment groups, whereas bcl-2 values were not markedly changed in these groups during occlusion period. These results showed that in the anesthetized rat heart 3-NP induced chemical preconditioning by decreasing infarct size, number of VEB, duration of VT and VF. Protective effect is associated with via decreased production of bax protein expression.  相似文献   

14.
Local and remote ischemic preconditioning (IPC) reduce ischemia-reperfusion (I/R) injury and preserve cardiac function. In this study, we tested the hypothesis that remote preconditioning is memorized by the explanted heart and yields protection from subsequent I/R injury and that the underlying mechanism involves sarcolemmal and mitochondrial ATP-sensitive K(+) (K(ATP)) channels. Male Wistar rats (300-350 g) were randomized to a control (n = 10), a remote IPC (n = 10), and a local IPC group (n = 10). Remote IPC was induced by four cycles of 5 min of limb ischemia, followed by 5 min of reperfusion. Local IPC was induced by four cycles of 2 min of regional myocardial ischemia, followed by 3 min of reperfusion. The heart was excised within 5 min after the final cycle of preconditioning, mounted in a perfused Langendorff preparation for 40 min of stabilization, and subjected to 45 min of sustained ischemia by occluding the left coronary artery and 120 min of reperfusion. I/R injury was assessed as infarct size by triphenyltetrazolium staining. The influence of sarcolemmal and mitochondrial K(ATP) channels on remote preconditioning was assessed by the addition of glibenclamide (10 microM, a nonselective K(ATP) blocker), 5-hydroxydecanoic acid (5-HD; 100 microM, a mitochondrial K(ATP) blocker), and HMR-1098 (30 microM, a sarcolemmal K(ATP) blocker) to the Langendorff preparation before I/R. The role of mitochondrial K(ATP) channels as an effector mechanism for memorizing remote preconditioning was further studied by the effect of the specific mitochondrial K(ATP) activator diaxozide (10 mg/kg) on myocardial infarct size. Remote preconditioning reduced I/R injury in the explanted heart (0.17 +/- 0.03 vs. 0.39 +/- 0.05, P < 0.05) and improved left ventricular function during reperfusion compared with control (P < 0.05). Similar effects were obtained with diazoxide. Remote preconditioning was abolished by the addition of 5-HD and glibenclamide but not by HMR-1098. In conclusion, the protective effect of remote preconditioning is memorized in the explanted heart by a mechanism that involves mitochondrial K(ATP) channels.  相似文献   

15.
Adenosine-enhanced ischemic preconditioning (APC) extends the protection afforded by ischemic preconditioning (IPC) by both significantly decreasing infarct size and significantly enhancing postischemic functional recovery. The purpose of this study was to determine whether APC is modulated by ATP-sensitive potassium (K(ATP)) channels and to determine whether this modulation occurs before ischemia or during reperfusion. The role of K(ATP) channels before ischemia (I), during reperfusion (R), or during ischemia and reperfusion (IR) was investigated using the nonspecific K(ATP) blocker glibenclamide (Glb), the mitochondrial (mito) K(ATP) channel blocker 5-hydroxydecanoate (5-HD), and the sarcolemmal (sarc) K(ATP) channel blocker HMR-1883 (HMR). Infarct size was significantly increased (P < 0.05) in APC hearts with Glb-I, Glb-R, and 5-HD-I treatment and partially with 5-HD-R. Glb-I and Glb-R treatment significantly decreased APC functional recovery (P < 0.05 vs. APC), whereas 5-HD-I and 5-HD-R had no effect on APC functional recovery. HMR-IR significantly decreased postischemic functional recovery (P < 0.05 vs. APC) but had no effect on infarct size. These data indicate that APC infarct size reduction is modulated by mitoK(ATP) channels primarily during ischemia and suggest that functional recovery is modulated by sarcK(ATP) channels during ischemia and reperfusion.  相似文献   

16.
Different from clinical studies of diabetes mellitus (DM), experimental data reveal both, higher and lower vulnerability of the heart to ischemic injury. We have previously demonstrated an enhanced resistance to ischemia-induced arrhythmias in isolated rat hearts in the acute phase of DM. Our objectives were thus to extend our knowledge to the effects of DM of different duration on myocardial infarction, in conjunction with susceptibility to arrhythmias, in the in vivo model. DM was induced by streptozotocin (45 mg/kg, i.v.) and following 1 week (acute phase) and 8 weeks (chronic phase), anesthetized open-chest diabetic and age-matched control rats were subjected to 30-min regional ischemia (occlusion of LAD coronary artery) followed by 4-h reperfusion for the evaluation of the infarct size (tetrazolium staining). In the control rats, ventricular tachycardia (VT) represented 45.4% of total arrhythmias and occurred in 90% of the animals. In the acute phase of DM, arrhythmia profile was similar to that in the control animals, and the incidence and severity of arrhythmias were not enhanced. On the other hand, the size of infarct area normalized to the size of area at risk was significantly smaller in the diabetics than in the controls (47.2 ± 2.8 vs. 70.2 ± 2.1%, respectively; p < 0.05). In the chronic phase, only 17.7% of arrhythmias occurred as VT in 44% of the diabetics (p < 0.05 vs. controls). Severity of arrhythmias was also lower (arrhythmia score: 2.1 ± 0.3 vs. 2.9 ± 0.3 in the controls, respectively; p < 0.05). This effect was not due to asmaller infarct size, since the latter did not differ from that in the controls. In conclusion: diabetic rat hearts exhibit rather lower, than higher sensitivity to ischemia. In acute phase of DM, diabetic hearts are more resistant to irreversible cell damage, whereas in the chronic phase they exhibit reduced susceptibility to arrhythmias; these discrepancies might reflect different pathogenesis of arrhythmias and myocardial infarction.  相似文献   

17.
Although both lipophilic and more hydrophilic statins share the same pathway of the inhibition of HMG-CoA reductase, their pleiotropic cardioprotective effects associated with the ability to cross cellular membranes, including membranes of heart cells, may differ. To test this hypothesis, isolated rat hearts were Langendorff-perfused either with simvastatin (S, 10 micromol/l) or pravastatin (P, 30 micromol/l), 15 min prior to ischemia. Control untreated hearts (C) were perfused with perfusion medium only. Postischemic contractile dysfunction, reperfusion-induced ventricular arrhythmias and infarct size were investigated after exposure of the hearts to 30-min global ischemia and 2-h reperfusion. Both lipophilic S and hydrophilic P reduced the severity of ventricular arrhythmias (arrhythmia score) from 4.3 +/- 0.2 in C to 3.0 +/- 0 and 2.7 +/- 0.2 in S and P, respectively, (both P < 0.05), decreased the duration of ventricular tachycardia and suppressed ventricular fibrillation. Likewise, the extent of lethal injury (infarct size) determined by tetrazolium staining and expressed in percentage of risk area, was significantly lower in both treated groups, moreover, the effect of P was more pronounced (27 +/- 2 % and 10 +/- 2 % in S and P groups, respectively, vs. 42 +/- 1 % in C; P < 0.05). In contrast, only S, but not P, was able to improve postischemic recovery of left ventricular developed pressure (LVDP; 48 +/- 12 % of preischemic values vs. 25 +/- 4 % in C and 21 +/ -7 % in P groups; P < 0.05). Our results suggest that differences in water solubility of statins indicating a different ability to cross cardiac membranes may underlie their distinct cardioprotective effects on myocardial stunning and lethal injury induced by ischemia/reperfusion.  相似文献   

18.
Transient episodes of ischemic preconditioning (PC) render myocardium protected against subsequent lethal injury after ischemia and reperfusion. Recent studies indicate that application of short, repetitive ischemia only during the onset of reperfusion after the lethal ischemic event may obtain equivalent protection. We assessed whether such ischemic postconditioning (Postcon) is cardioprotective in pigs by limiting lethal injury. Pentobarbital sodium-anesthetized, open-chest pigs underwent 30 min of complete occlusion of the left anterior descending coronary artery and 3-h reflow. PC was elicited by two cycles of 5-min occlusion plus 10-min reperfusion before the 30-min occlusion period. Postcon was elicited by three cycles of 30-s reperfusion, followed by 30-s reocclusion, after the 30-min occlusion period and before the 3-h reflow. Infarct size (%area-at-risk using triphenyltetrazolium chloride macrochemistry; means +/- SE) after 30 min of ischemia was 26.5 +/- 5.2% (n = 7 hearts/treatment group). PC markedly limited myocardial infarct size (2.8 +/- 1.2%, n = 7 hearts/treatment group, P < 0.05 vs. controls). However, Postcon had no effect on infarct size (37.8 +/- 5.1%, n = 7 hearts/treatment group). Within the subendocardium, Postcon increased phosphorylation of Akt (74 +/- 12%) and ERK1/2 (56 +/- 10%) compared with control hearts subjected only to 30-min occlusion and 15-min reperfusion (P < or = 0.05), and these changes were not different from the response triggered by PC (n = 5 hearts/treatment group). Phosphorylation of downstream p70S6K was also equivalent in PC and Postcon groups. These data do not support the hypothesis that application of 30-s cycles of repetitive ischemia during reperfusion exerts a protective effect on pig hearts subjected to lethal ischemia, but this is not due to a failure to phosphorylate ERK and Akt during early reperfusion.  相似文献   

19.
Erythropoietin has recently been shown to have effects beyond hematopoiesis such as prevention of neuronal and cardiac apoptosis secondary to ischemia. In this study, we evaluated the in vivo protective potential of erythropoietin in the reperfused rabbit heart following ventricular ischemia. We show that "preconditioning" with erythropoietin activates cell survival pathways in myocardial tissue in vivo and adult rabbit cardiac fibroblasts in vitro. These pathways, activated by erythropoietin in both whole hearts and cardiac fibroblasts, are also activated acutely by ischemia/reperfusion injury. Moreover, in vivo studies indicate that erythropoietin treatment either prior to or during ischemia significantly enhances cardiac function and recovery, including left ventricular contractility, following myocardial ischemia/reperfusion. Our data indicate that a contributing in vivo cellular mechanism of this protection is mitigation of myocardial cell apoptosis. This results in decreased infarct size as evidenced by area at risk studies following in vivo ischemia/reperfusion injury, translating into more viable myocardium and less ventricular dysfunction. Therefore, erythropoietin treatment may offer novel protection against ischemic heart disease and may act, at least in part, by direct action on cardiac fibroblasts and myocytes to alter survival and ventricular remodeling.  相似文献   

20.
Brief episodes of myocardial ischemia-reperfusion were shown to be protective against reperfusion injury when used during early reperfusion after a prolonged ischemic episode. This phenomenon has been termed myocardial ischemic postconditioning. In this study, an effect of ischemic postconditioning on persistent reperfusion-induced ventricular fibrillation was studied in the rat isolated heart. 2 minutes of global ischemia on the 15th minute of reperfusion after 30 minutes of regional ischemia effectively abolished the persistent ventricular fibrillation. In non-postconditioned hearts, the ventricular fibrillation continued to the end of reperfusion. The ischemic postconditioning seems to exert a strong antiarrhythmic effect protecting the heart against persistent reperfusion-induced ventricular tachyarrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号