首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to elucidate the protective role of glutathione S-transferases (GSTs) against oxidative stress, we have investigated the kinetic properties of the human alpha-class GSTs, hGSTA1-1 and hGSTA2-2, toward physiologically relevant hydroperoxides and have studied the role of these enzymes in glutathione (GSH)-dependent reduction of these hydroperoxides in human liver. We have cloned hGSTA1-1 and hGSTA2-2 from a human lung cDNA library and expressed both in Escherichia coli. Both isozymes had remarkably high peroxidase activity toward fatty acid hydroperoxides, phospholipid hydroperoxides, and cumene hydroperoxide. In general, the activity of hGSTA2-2 was higher than that of hGSTA1-1 toward these substrates. For example, the catalytic efficiency (kcat/Km) of hGSTA1-1 for phosphatidylcholine (PC) hydroperoxide and phosphatidylethanolamine (PE) hydroperoxide was found to be 181.3 and 199.6 s-1 mM-1, respectively, while the catalytic efficiency of hGSTA2-2 for PC-hydroperoxide and PE-hydroperoxide was 317.5 and 353 s-1 mM-1, respectively. Immunotitration studies with human liver extracts showed that the antibodies against human alpha-class GSTs immunoprecipitated about 55 and 75% of glutathione peroxidase (GPx) activity of human liver toward PC-hydroperoxide and cumene hydroperoxide, respectively. GPx activity was not immunoprecipitated by the same antibodies from human erythrocyte hemolysates. These results show that the alpha-class GSTs contribute a major portion of GPx activity toward lipid hydroperoxides in human liver. Our results also suggest that GSTs may be involved in the reduction of 5-hydroperoxyeicosatetraenoic acid, an important intermediate in the 5-lipoxygenase pathway.  相似文献   

2.
The ozonide derived from methyl linoleate was shown to cause a dose dependent inhibition of the phagocytosis of rat alveolar macrophages exposed in vitro to concentrations varying from 10(-5) to 10(-4) M. Vitamin C was demonstrated to detoxify the ozonide. In analogy to their behaviour on exposure to ozone, vitamin E supplemented cells demonstrated a decreased and glutathione depleted cells an increased sensitivity towards the compound. The characteristics of antioxidant protection of cells against the ozonide were thus comparable to those for protection against ozone. Preincubation with glutathione also detoxified the ozonide model compound. Survival of rat alveolar macrophages exposed to a toxic concentration of the ozonide (86 microM final concentration), measured by phagocytosis of the cells, increased significantly (P less than 0.01) from 23 to 54% after a 2.5-h preincubation of the ozonide with glutathione (5 mM final concentration). The detoxification of methyl linoleate ozonide by glutathione could be catalyzed by the rat liver glutathione S-transferases. After a 2.5-h preincubation of the ozonide (86 microM final concentration) with glutathione and glutathione S-transferases (final concentrations, respectively, 5 mM and 0.01 mg/ml), its toxicity was completely abolished, as demonstrated by the 98% survival (P less than 0.001) of subsequently exposed cells. A Km(app) (at 1 mM glutathione) for the ozonide of 0.80 mM and a Vmax(app) (at pH 6.5) of 94 nmol glutathione converted X min-1 X mg protein-1 or (at pH 7.4) of 34 nmol glutathione converted X min-1 X mg protein-1, were found. This glutathione S-transferase catalyzed detoxification of the potential intermediates in ozone induced cell damage, offers a new viewpoint on the role of glutathione in the protection of cells against ozone.  相似文献   

3.
Several genes involved in the metabolism of carcinogens have been found to be polymorphic in the human population, and specific alleles are associated with increased risk of cancer at various sites. This study is focused on the polymorphic enzymes glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) that are involved in the detoxification of many xenobiotics involved in the etiology of bladder cancer. To investigate the role of GSTM1 and GSTT1 in bladder carcinogenesis, the polymerase chain reaction was used to determine GSTM1 and GSTT1 genotypes of cancer patients (n = 76) and controls (n = 248). The proportion of putative risk GSTM1 null genotype in the case group was 52.6%, compared to 49.6% in the control group, but the GSTT1 0/0 frequency in the bladder cancer group was significantly higher (P = 0.04) in comparison with the control group (27.6 vs 16.9%). Individuals lacking the GSTT1 gene are at an approximately 1.9-fold higher risk (OR = 1.87, C.I. 95% = 1.03-3.42) of developing bladder cancer in comparison with individuals with at least one active allele in the GSTT1 locus. A significantly higher incidence of GSTM1 deletion genotype (P = 0.02) was found in smokers with bladder cancer compared to the controls (70.6 vs 49.6%). Smokers lacking the GSTM1 gene are at an approximately 2.4-fold higher risk of bladder cancer (OR = 2.44, C.I. 95% = 1.10-5.30). The effect of smoking associated with the GSTT1 0/0 genotype was not found to affect the risk of bladder cancer.  相似文献   

4.
The ultimate diol epoxide carcinogens derived from polycyclic aromatic hydrocarbons, such as benzo[a]pyrene (BP), are metabolized primarily by glutathione (GSH) conjugation reaction catalyzed by GSH transferases (GSTs). In human liver and probably lung, the alpha class GSTs are likely to be responsible for the majority of this reaction because of their high abundance. The catalytic efficiency for GSH conjugation of the carcinogenic (+)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide [(+)-anti-BPDE] is more than 5-fold higher for hGSTA1-1 than for hGSTA2-2. Here, we demonstrate that mutation of isoleucine-11 of hGSTA2-2, a residue located in the hydrophobic substrate-binding site (H-site) of the enzyme, to alanine (which is present in the same position in hGSTA1-1) results in about a 7-fold increase in catalytic efficiency for (+)-anti-BPDE-GSH conjugation. Thus, a single amino acid substitution is sufficient to convert hGSTA2-2 to a protein that matches hGSTA1-1 in its catalytic efficiency. The increased catalytic efficiency of hGSTA2/I11A is accompanied by greater enantioselectivity for the carcinogenic (+)-anti-BPDE over (-)-anti-BPDE. Further remodeling of the H-site of hGSTA2-2 to resemble that of hGSTA1-1 (S9F, I11A, F110V, and S215A mutations, SIFS mutant) results in an enzyme whose catalytic efficiency is approximately 13.5-fold higher than that of the wild-type hGSTA2-2, and about 2.5-fold higher than that of the wild-type hGSTA1-1. The increased activity upon mutations can be rationalized by the interactions of the amino acid side chains with the substrate and the orientation of the substrate in the active site, as visualized by molecular modeling. Interestingly, the catalytic efficiency of hGSTA2-2 toward (-)-anti-BPDE was increased to a level close to that of hGSTA1-1 upon F110V, not I11A, mutation. Similar to (+)-anti-BPDE, however, the SIFS mutant was the most efficient enzyme for GSH conjugation of (-)-anti-BPDE.  相似文献   

5.
Background: Studies investigating the association between genetic polymorphism of glutathione S-transferase T1 (GSTT1) and risk of colorectal cancer have reported conflicting results. In order to clarify the effect of GSTT1 polymorphism on the risk of developing colorectal cancer, we carried out a meta-analysis using published data to obtain more precise estimates of risk. Methods: Electronic searches of PubMed and EMBASE were conducted to select studies for this meta-analysis. Papers were included if they were observational studies investigating the association between GSTT1 polymorphism and colorectal cancer risk. The principal outcome measure was the odds ratio (OR) with 95% confidence interval (CI) for the risk of colorectal cancer associated with GSTT1 null genotype. Results: We identified 30 eligible studies, which included 7635 cases and 12,911 controls. The combined results based on all studies showed that there was a statistically significant link between GSTT1 null genotype and colorectal cancer risk (OR = 1.20, 95% CI = 1.03–1.40). In the analysis of ethnic groups, we observed distinct differences associated with GSTT1 null genotype, the pooled odds ratios for the GSTT1 polymorphism were 1.32 in Caucasians (95% CI = 1.09–1.58) and 1.03 in Asians (95% CI = 0.81–1.32). As far as concerned the interaction between GSTT1 genotype and colorectal cancer risk in relation to smoking history, there was no increase in risk for smokers or nonsmokers with the GSTT1 null genotype (smokers: OR = 1.13, 95% CI = 0.80–1.60, nonsmokers: OR = 0.99, 95% CI = 0.71–1.38). When stratifying by the location of colorectal cancer, we found that there was a statistically significant link in rectal cancer (OR = 1.50, 95% CI = 1.09–2.07), but not in colon cancer (OR = 1.33, 95% CI = 0.94–1.88). No associations could be detected between null GSTT1 polymorphism and age, sex, tumor stage and differentiation. Conclusion: Our current study demonstrates that GSTT1 null genotype is associated with an increased risk of colorectal cancer, specifically, among Caucasians.  相似文献   

6.
4-Nitroquinoline 1-oxide (NQO) is a reactive electrophile with potent cytotoxic as well as genotoxic activities. NQO forms a conjugate, QO-SG, with glutathione, which greatly reduces its chemical reactivity. Previous studies demonstrated that glutathione S-transferase (GST) P1a-1a and multidrug resistance protein (MRP) 1/2 act in synergy to confer resistance to both cyto- and genotoxicities of NQO, whereas protection afforded by GSTP1a-1a or MRP alone was much less. To better understand the role of glutathione, GSTP1a-1a, and MRP1 in NQO detoxification, we have characterized the kinetics and cofactor requirements of MRP1-mediated transport of QO-SG and NQO. Additionally, using recombinant GSTP1a-1a and physiological conditions, we have examined the enzymatic and nonenzymatic formation of QO-SG. Results show that MRP1 supports efficient transport of QO-SG with a K(m) of 9.5 microM and a V(max) comparable to other good MRP1 substrates. Glutathione or its S-methyl analogue enhanced the rate of (3)H-QO-SG transport, whereas QO-SG inhibited the rate of (3)H-glutathione transport. These data favor a mechanism for glutathione-enhanced, MRP1-mediated QO-SG transport that does not involve cotransport of glutathione. NQO was not transported by MRP1 either alone or in the presence of S-methyl glutathione. Transport of (3)H-NQO was observed in the presence of glutathione, but uptake into MRP1-containing vesicles was entirely attributable to its conjugate, QO-SG, formed nonenzymatically. While the nonenzymatic rate was readily measurable, enzyme catalysis was overwhelmingly dominant in the presence of GSTP1a-1a (rate enhancement factor, (k(cat)/K(m))/k(2), approximately 3 x 10(6)). We conclude that MRP1 supports detoxification of NQO via efficient, glutathione-stimulated efflux of QO-SG. While nonenzymatic QO-SG formation and MRP1-mediated conjugate efflux result in low-level protection from cyto- and genotoxicities, this protection is greatly enhanced by coexpression of GSTP1-1 with MRP1. This result emphasizes the quantitative importance of enzyme-catalyzed conjugate formation, a crucial determinant of high-level, MRP-dependent protection of cells from NQO toxicity.  相似文献   

7.
Kim DH 《Mutation research》2007,622(1-2):14-18
Higher intakes of vegetables have been reported to be associated with a reduced risk of colorectal cancer. Folate, a water-soluble B vitamin, and one of the major micronutrients in vegetables, may be partly responsible for this beneficial effect. Conversely, a high alcohol intake has been related to an increased risk of colorectal cancer. The combination of high folate and low alcohol intake, "methyl group diets", was reported to have a strong protective effect. These findings support a role of methyl group availability as an underlying mechanism for an effect of folate on colorectal carcinogenesis. The protective effect of the homozygous variant TT form of the MTHFR genotype (C677T) on the risk of colorectal cancer seems to be modified by the level of methyl diets, that is, by folate, which has a protective effect, or conversely by alcohol. Recommendation of higher intake of folate and lower intake of alcohol to the target population, especially those with TT genotype of MTHFR, may be an effective preventive approach against colorectal cancer.  相似文献   

8.
Colorectal cancer is one of the most common forms of cancer and is the third leading cause of cancer-related death worldwide. Published data on the association between CYP1A1 (MspI and Ile 462 Val) polymorphisms and colorectal cancer risk are inconclusive. To address these issues, we carried out a meta-analysis of available case–control study. Online electronic searches of PubMed were performed. We identified 17 studies (6,673 colorectal cancer patients and 8,102 control subjects) that examined the association between CYP1A1 (MspI and Ile 462 Val) polymorphisms and risk of colorectal cancer. For CYP1A1 MspI polymorphism, we performed a meta-analysis from 13 studies including 5,468 cases and 6,492 controls. Overall, there was no statistically significant association between CYP1A1 MspI polymorphism and colorectal cancer susceptibility. In the subgroup analyses based on ethnicities, no statistically significant associations were observed in all genetic models. With respect to CYP1A1 Ile 462 Val polymorphism, a total of 14 studies including 6,654 cases and 7,859 controls were involved in this meta-analysis. The CYP1A1 Ile 462 Val polymorphism was associated with risk of colorectal cancer. Ethnic subgroup analyses revealed that significant associations were found in Asians and Caucasians. In summary, this meta-analysis suggests that CYP1A1 Ile 462 Val polymorphism was a low-penetrance susceptibility gene in colorectal cancer development. On the contrary, CYP1A1 MspI polymorphism does not seem capable of modifying colorectal cancer risk.  相似文献   

9.
The human glutathione S-transferases are products of a gene superfamily which consists of at least four gene families. The various glutathione S-transferase genes are located on different human chromosomes, and new gene(s) are still being added to the gene superfamily. We have characterized a cDNA in pGTH4 encoding human glutathione S-transferase subunit 4 (GST mu) and mapped its gene (or a homologous family member) on chromosome 1 at p31 by in situ hybridization. Genomic Southern analysis with the 3' noncoding region of the cDNA revealed at least four human DNA fragments with highly homologous sequences. Using a panel of DNAs from mouse-human somatic cell hybrids in genomic DNA hybridization we show that the Hb (or B) genes of human glutathione S-transferases are on three separate chromosomes: 1, 6, and 13. Therefore, the glutathione S-transferase B gene family, which encodes the Hb (mu) class subunits, is a dispersed gene family. The GST mu (psi) gene, whose expression is polymorphic in the human population, is probably located on chromosome 13. We propose that the GST mu (psi) gene was created by a transposition or recombination event during evolution. The null phenotype may have resulted from a lack of DNA transposition just as much as from the deletion of an inserted gene.  相似文献   

10.
Several lines of evidence, including an increased level of lipid peroxidation and the depletion of antioxidant molecules like as glutathione (GSH), indicate that oxidative stress plays an important role in the pathogenesis of several neurodegenerative disorders, such as Parkinson's disease (PD) and Alzheimer's disease (AD). We previously observed a significant increased level of DNA oxidative damage in peripheral blood cells of PD patients, with respect to controls, moreover, the activity of glutathione transferases (GSTs) measured in circulating plasma was higher in controls than in PD patients, suggesting a lower enzymatic protection in PD individuals. Among human GSTs, glutathione transferase A4-4 displays a high catalitic activity towards 4-hydroxy-2-nonenal (HNE), a marker of lipid peroxidation whose levels have been found significantly increased in the substantia nigra of Parkinson's disease patients, in respect to controls. We performed this study to determine the presence of allelic variants of functional interest in the coding region of the hGSTA4 gene on 60 PD patients and 60 healthy controls. By the combined effort of polymerase chain reaction/single-strand conformation polymorphisms (PCR/SSCP) techniques, we observed a single nucleotide polymorphism (SNP) G351A leading to the silent mutation Gln117Gln. No significant difference was observed in the distribution of this polymorphism between PD individuals and controls, moreover, we did not observe any other polymorphism in the hGSTA4 gene in our population. Further studies are required to test the role played by both factors regulating the level of the expression of the hGSTA4 gene and any possible post-translational modification of the protein, in the protection against oxidative damage in neuronal cells.  相似文献   

11.
We have examined melanocortin-1 receptor (MC1R) variant allele frequencies in the general population and in a collection of adolescent dizygotic and monozygotic twins to determine statistical associations of pigmentation phenotypes with increased skin cancer risk. This included hair and skin color, freckling, mole count and sun exposed skin reflectance. Nine variants were studied and designated as either strong R (OR = 63; 95% CI 32-140) or weak r (OR = 5; 95% CI 3-11) red hair alleles. Penetrance of each MC1R variant allele was consistent with an allelic model where effects were multiplicative for red hair but additive for skin reflectance. To assess the interaction of the brown eye color gene BEY2/OCA2 on the phenotypic effects of variant MC1R alleles we imputed OCA2 genotype in the twin collection. A modifying effect of OCA2 on MC1R variant alleles was seen on constitutive skin color, freckling and mole count. In order to study the individual effects of these variants on pigmentation phenotype we have established a series of human primary melanocyte strains genotyped for the MC1R receptor. These include strains which are MC1R wild-type consensus, variant heterozygotes, and homozygotes for strong R alleles Arg151Cys and Arg160Trp. Ultrastructural analysis demonstrated that only consensus strains contained stage III and IV melanosomes in their terminal dendrites whereas Arg151Cys and Arg160Trp homozygous strains contained only immature stage I and II melanosomes. Such genetic association studies combined with the functional analysis of MC1R variant alleles in melanocytic cells should provide a link in understanding the association between pigmentary phototypes and skin cancer risk.  相似文献   

12.
The expression of the GST1, GST2, and GST3 loci in fetal, neonatal, and infant tissues has been studied using starch gel electrophoresis and chromatofocusing. Each locus demonstrated developmental changes in expression, some of which were specific to a single tissue while others occurred in several tissues. GST1 was not usually expressed in any of the tissues studied before 30 weeks of gestation but steadily increased thereafter until adult levels were reached in late infancy. In neonates and older infants the frequencies of the GST1*0, GST1*1, and GST1*2 alleles were 0.79, 0.07, and 0.14, respectively. GST2 was always expressed in liver and adrenal but was only weakly expressed in spleen, cardiac muscle, and diaphragm. In kidney this locus was not usually expressed until nearly 1 year after birth. The GST3 isoenzymes were present in all fetal, neonatal, and infant tissues, although their expression in liver decreased after 30 weeks of gestation. Other isoenzymes with fast anodal mobilities were also identified in several tissues; these are believed to be GST3 isoenzymes that have undergone posttranslational modification rather than products of the putative GST4 locus. No specifically fetal isoenzymes were detected.  相似文献   

13.
Geng P  Chen Y  Ou J  Yin X  Sa R  Liang H 《DNA and cell biology》2012,31(6):1070-1077
E-cadherin, encoded by the CDH1 gene, involves in invasion and metastasis of cancer cells. CDH1 -C160A polymorphism was shown to contribute to genetic susceptibility to colorectal cancer (CRC). However, the results from different studies remain controversial. This study was conducted to further explore the association between CDH1 -C160A genetic polymorphism and CRC susceptibility by means of a meta-analysis. A comprehensive literature search was conducted to identify all case-control studies of CDH1 -C160A polymorphism and risk for CRC. A total of nine eligible studies, including 7954 CRC cases and 7369 controls, were identified to the meta-analysis. On the whole, the meta-analysis indicated that CDH1 -C160A genetic polymorphism could reduce the risk of CRC under AA versus CC contrast (odds ratio [OR]=0.86, 95% confidence interval [CI]=0.75-0.98, p(heterogeneity)=0.11), recessive model (OR=0.88, 95% CI=0.77-0.99, p(heterogeneity)=0.23), dominant model (OR=0.92, 95% CI=0.87-0.99, p(heterogeneity)=0.11), and allele A versus allele C contrast (OR=0.93, 95% CI=0.88-0.98, p(heterogeneity)=0.26). A conclusion could be drawn from the research that CDH1 -C160A polymorphism provides a possible protection against CRC, which is especially evident in Caucasian and hospital populations.  相似文献   

14.
The developmental expression of the alpha, mu and pi class glutathione S-transferases has been defined in human liver using radioimmunoassay and immunohistochemistry. Expression of alpha and mu class isoenzymes increased significantly at birth, while that of the pi isoenzyme declined during the first trimester. Mu-class isoenzymes (GST1 1, GST1 2, GST1 2-1) were expressed in hepatocytes but not in other liver cell types.  相似文献   

15.
The isolated perfused rabbit lung metabolised 7--11 % of 20 mumol of [14C]-benzo(a)pyrene added in the perfusion medium in 1 h. The major metabolite formed was 3-hydroxybenzo(a)pyrene, both free (30--40 % of the total metabolites) and conjugated (4 % of total metabolites). Quinones comprised 15 % of the total and metabolism at the 9, 10 position accounted for a further 10 %. Forty per cent of the water-soluble metabolites was chromatographically identical to the glutathione conjugate of benzo(a)pyrene 4,5-oxide. Sulphate and glucuronide conjugates were formed in small but detectable amounts, principally from phenols, but also from dihydrodiols. After 1 h the more water-soluble conjugates had diffused from the lung into the perfusion medium, but the majority (60--90 %) of the metabolic products were still concentrated within the lung. The lung's limited ability to conjugate its major metabolites of benzo(a)pyrene with sulphuric or glucuronic acid, coupled with slow elimination of the products formed, particularly dihydrodiols may contribute to the susceptibility of this organ to polycyclic aromatic hydrocarbon-induced carcinogenesis.  相似文献   

16.
Prostate cancer (PCa) is the most commonly diagnosed cancer in the developed world, and the incidence of this cancer is rising rapidly in many countries. Several polymorphic genes encoding enzymes involved carcinogenesis have been studied as potential risk factor of prostate cancer. Genetic polymorphisms in glutathione S-transferases M1 (GSTM1), T1 (GSTT1) and P1 (GSTP1) genes have been constantly reported to have a meaningful effect on prostate cancer risk. But other surveys of this relationship have yielded inconsistent results. To assess the possible contribution of the GSTM1, GSTT1, and GSTP1 gene polymorphisms in prostate cancer, we performed a population-based study of 139 prostate cancer patients and 115 healthy controls based on their genotype distributions of the genes. There were no differences in distributions of genotype frequencies of GSTM1 and GSTP1 polymorphisms between prostate cancer patients and controls (OR 1.60, 95 % CI 0.886–2.860 for GSTM1 and OR 1.38, 95 % CI 0.739–2.577 for GSTP1). In contrast, the distribution of GSTT1-null genotype is significantly different between the prostate cancer case and controls (OR 0.26, 95 % CI 0.128–0.518, p < 0.001). Meanwhile, GSTP1 I/V and V/V genotypes were significantly associated with prostate cancer where the PSA level was more than 10.0 (OR 2.73, 95 % CI 1.319–5.639, p = 0.006). Thus, our data imply that the GSTT1-null genotype may not be a risk factor but a protective factor of prostate cancer and GSTP1 Val allele is a risk factor for the prostate cancer where the PSA level was high, although functional studies with larger sample size are necessary to elucidate these findings.  相似文献   

17.
Wei B  Zhou Y  Xu Z  Xi B  Cheng H  Ruan J  Zhu M  Hu Q  Wang Q  Wang Z  Yan Z  Jin K  Zhou D  Xuan F  Huang X  Shao J  Lu P 《PloS one》2011,6(11):e27545

Background

Human oxoguanine glycosylase 1 (hOGG1) in base excision repair (BER) pathway plays a vital role in DNA repair. Numerous epidemiological studies have evaluated the association between hOGG1 Ser326Cys polymorphism and the risk of cancer. However, the results of these studies on the association remain conflicting. To derive a more precise estimation of the association, we conducted a meta-analysis.

Methodology/Principal Findings

A comprehensive search was conducted to identify the eligible studies of hOGG1 Ser326Cys polymorphism and cancer risk. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. We found that the hOGG1 Ser326Cys polymorphism was significantly associated with overall cancer risk (Cys/Cys vs. Ser/Ser: OR = 1.19, 95%CI = 1.09–1.30, P<0.001; Cys/Cys vs. Cys/Ser+Ser/Ser: OR = 1.16, 95%CI = 1.08–1.26, P<0.001). Moreover, in subgroup analyses by cancer types, the stronger significant association between hOGG1 Ser326Cys polymorphism and lung cancer risk was found (Cys/Cys vs. Ser/Ser: OR = 1.29, 95%CI = 1.16–1.44, P<0.001; Cys/Cys vs. Cys/Ser+Ser/Ser: OR = 1.22, 95%CI = 1.12–1.33, P<0.001). The significant effects of hOGG1 Ser326Cys polymorphism on colorectal, breast, bladder, prostate, esophageal, and gastric cancer were not detected. In addition, in subgroup analyses by ethnicities, we found that the hOGG1 Ser326Cys polymorphism was associated with overall cancer risk in Asians (Cys/Cys vs. Ser/Ser: OR = 1.21, 95%CI = 1.10–1.33, P<0.001).

Conclusions

This meta-analysis showed that hOGG1 326Cys allele might be a low-penetrant risk factor for lung cancer.  相似文献   

18.

Lung cancer is a lethal malignancy and is affected by genetic polymorphisms that contribute to an individual’s susceptibility to developing the disease. Several studies on lung cancer showed conflicting results. The aim of this study is to investigate whether individual or combined modifying effects of LOX G/A, GSTM1 active/null, GSTT1 active/null and GSTP1 Ile/Val polymorphisms are related to the risk of lung cancer in relation to smoking in the Egyptian population. This study is a hospital-based case control study that included 200 patients and 200 control subjects. Genotyping of the 4 studied genes was determined by Multiplex PCR for GSTM1 and GSTT1 and Taq man SNP assay for GSTP1 and LOX genes. The LOX G/A and GSTP1 Ile/Val in both homozygous and heterozygous variants, and the GSTM1 and GSTT1 null genotype showed significant association with lung cancer. Combination between gene polymorphism and smoking increased the risk of developing cancer by 2.7 fold in the LOX GA+AA variant, 1.9 fold in the GSTM1 null variant, 4.8 fold in the GSTT1 null variant and 4.3 fold in the GSTP1 Ile/Val+Val/Val variant. The genetic combination (LOX GA+AA/GSTT1 active, LOX GG/GSTT1 null, LOX GA+AA/GSTT1 null, LOX GA+AA/GSTP1 Ile/Ile, LOX GG/GSTP1 Ile/Val+Val/Val and LOX GA+AA/GSTP1 Ile/Val+Val/Val) led to a higher lung cancer risk, compared to the reference group. The LOX GA/AA, GSTM1 null, GSTT1 null and GSTP1 Ile/Val, Val/Val genotypes contributed to increased lung cancer susceptibility. To the best of our knowledge, this is the first study of LOX genotyping in the Egyptian population. The combination of genotypes increased the risk of cancer, indicating the importance of gene–gene interaction and giving a targeted preventive approach.

  相似文献   

19.
Hemachand T  Shaha C 《FEBS letters》2003,538(1-3):14-18
On the sperm surface, glutathione S-transferases (GSTs) exist as oocyte binding proteins but their detoxification function in this unique cell type is not known. Using H(2)O(2)- and 4-hydroxynonenal-induced sperm dysfunction models, this study demonstrates that the sperm surface GSTs are able to use extracellular reduced glutathione to inhibit the loss of functional competence of goat spermatozoa; however, in the presence of GST inhibitors, they are unable to do so. In the context of susceptibility of spermatozoa to oxidative stress, this finding that strategically located sperm surface GSTs are important for maintaining the functional competence of sperm is relevant to studies on male infertility.  相似文献   

20.
INTRODUCTION: Changes in liver blood flow caused by an unknown splanchnic vasoconstrictor have been noted in colorectal cancer patients with liver metastases. This prospective study was performed to assess whether plasma levels of big endothelin-1 (big ET-1) were raised in patients with colorectal cancer. METHODS: Plasma samples from peripheral vein of patients who underwent surgery for primary colorectal cancer (n=60) and those with known colorectal liver metastases (n=45) for a period of 15 months were taken prior to treatment and compared to age- and sex-matched controls (n=20). Plasma samples were analysed by using a single-step sandwich enzyme immunoassay. Immunohistochemistry and in situ hybridisation were also performed on tumour sections to investigate the expression of ET-1 by cancer cells. RESULTS: The median (range) plasma concentration of big ET-1 in controls was 2.1 pg/mL (1.2-13.4 pg/mL). The median (range) plasma concentration of big ET-1 in colorectal cancer patients with no overt hepatic metastases was 3.8 pg/mL (1.2-15.8 pg/mL), p=0.002, and the median (range) plasma concentration of big ET-1 in colorectal cancer patients with hepatic metastases was 5.2 pg/mL (1.7-30 pg/mL), p=0.0001; both were significantly elevated compared to the control group. A significant difference in immunostaining for big ET-1 was noted between paired normal colonic mucosa (median score-1) and tumour sections (median score-3), p=0.01. CONCLUSION: This study has demonstrated elevated concentrations of big ET-1 in colorectal cancer patients, especially in those with hepatic metastases. Upregulation of ET activity in colorectal cancer could be inferred by the increased immunostaining of big ET-1 in cancer cells. Therefore, plasma big ET-1 levels should be evaluated as a potential tumour marker for the identification of hepatic metastases at an earlier stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号