首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Immunological evidence that inactive renin is prorenin   总被引:4,自引:0,他引:4  
Antibody raised to a synthetic dodecapeptide, corresponding to the C-terminal portion of the human renin pro-segment, was tested for its ability to recognize highly purified human inactive or active (mature) renins; immune complexes were detected by precipitation with protein A-Sepharose. Serial antibody dilutions caused identical binding of renal or plasma inactive renins but failed to bind active renin. In contrast, antibody to active renin recognized both active and inactive forms. Reversible acid activation of inactive renin enhanced its binding to the anti-prorenin antibody, whereas irreversible trypsin activation significantly reduced binding. Binding was abolished following prolonged exposure to trypsin or if inactive renin was acidified prior to trypsin treatment. These results indicate that inactive renin shares immunochemical determinants with prorenin; they suggest that acidification alters the conformation of the pro-segment and that trypsin can convert the molecule both to fully mature renin and to intermediate form(s).  相似文献   

2.
This study was undertaken 1) to determine whether or not renin is present in synovial fluid in patients with rheumatoid arthritis and osteoarthritis, and, if present, 2) to investigate whether it is synthesized in synovial fluid, or it is only transported from the circulation into the synovial cavity. The active renin concentration (indirect) was measured with angiotensin I radioimmunoassay kits. Inactive renin was converted into active renin with Sepharose-bound trypsin. Both active and inactive forms of renin were found in synovial fluid. They were significantly higher in patients with rheumatoid arthritis (n = 9) than in those with osteoarthritis (n = 16). In plasma, the concentration of inactive renin was significantly higher (P less than 0.001) in the former. Albumin, transferrin, alpha 2-macroglobulin, ceruloplasmin and immunoglobulins G and M were also found in synovial fluid. In each disease, a plot of the log ratio of synovial fluid to the serum concentration against the log molecular weight of each protein gave an approximately straight line curve, suggesting that these proteins are derived from the circulation and are transported into the synovial cavity. In contrast, the ratio of synovial fluid to plasma concentrations of active renin was significantly higher than that predicted on the basis of the above-mentioned interrelationships in both diseases, whereas the ratio of inactive renin was significantly lower. These findings suggest that 1) inactive and active renin are filtered into the synovial fluid from the circulation, and that 2) inactive renin is converted into the active form in the fluid.  相似文献   

3.
Two distinctly different high molecular weight forms of renin are present in mouse plasma in addition to the well-recognized active 40 000 dalton form. The biggest form has a molecular weight of about 800 000, and is stable in 4 M urea, but can be converted to the active 40 000 dalton form, by storage, exposure to acid and limited proteolysis. The 70 000 dalton form can be activated by acid and limited proteolysis. However, the 70 000 dalton form does not change molecular weight with activation. By measuring renin, not only by its enzymatic activity, but also by the direct radioimmunoassay for the renin molecule, which measures enzymatically active as well as inactive renin, it was found that both forms were activated but neither of them completely. The validity of the currently used term "total" renin as the enzymatic renin activity after acid activation, is, therefore, questionable. The quantitative significance of this must await methods which can ensure complete conversion or activation of the high molecular weight forms of renin in plasma.  相似文献   

4.
In order to investigate the mechanisms of increased plasma inactive renin in diabetics with microvascular complications, changes in active and inactive renin with the progress of diabetes mellitus were studied, and effects of standing on inactive renin release and the relationship between plasma inactive renin and serum trypsin or protease inhibitors wee also studied. Inactive renin increased with the aggravation of diabetes mellitus, but active renin didn't show significant changes with the aggravation of diabetes mellitus. Active renin was significantly increased both in the healthy subjects and in the diabetic patients when they were in an upright position, but no significant change was observed in inactive renin. Serum trypsin in diabetics with retinopathy and nephropathy was lower than that in those with no clinical sign of microangiopathy, but the correlation between plasma inactive renin and serum trypsin was not significant. There was a significant correlation between plasma inactive renin and serum alpha 2-globulin (r = 0.52, p less than 0.01). Although plasma inactive renin was not significantly correlated with serum alpha 1-antitrypsin, there was a significant correlation between plasma inactive renin and serum alpha 2-macroglobulin (r = 0.61, p less than 0.01). These results show that the increased levels of plasma inactive renin observed with the development of diabetic microangiopathy are probably related to the altered plasma protein metabolism observed in patients with diabetes mellitus. However, it is not clear whether this altered protein metabolism is related to the conversion from inactive to active renin.  相似文献   

5.
Inactive renin has been isolated from pooled amniotic fluid and purified approximately 642-fold. Prior to activation the isolates had approximately 4% of the activity found after activation. The observation is similar to that reported for inactive renin from chorionic cell culture and suggests a placental origin of amniotic fluid inactive renin. Using plasma from an estrogen-treated woman, renin substrate was recovered free of renin and inactive renin and a portion was separated into NMW and HMW components. The NMW form constituted approximately 93% and the HMW form approximately 7% of the renin substrate. Amniotic fluid inactive renin was used for determinations of enzyme-substrate kinetics with the pooled, NMW, and HMW plasma substrate and tetradecapeptide synthetic substrate, and the results were compared to similar determinations using standard renal renin. Using synthetic substrate, the kinetics of renal renin and amniotic fluid inactive renin before and after activation were similar. The kinetics of renal renin with pooled, NMW, and HMW plasma substrate were also similar. Amniotic fluid inactive renin had a lower Km with pooled than with NMW substrate, however, which resulted from a significantly smaller Km with HMW component. Although the affinity constants with pooled substrate were not different for renin and inactive renin, the Km of inactive renin was significantly less with the HMW component of plasma renin substrate. The observations are compatible with a role for placental inactive renin in normal pregnancy and suggest the possibility of a further role in hypertensive pregnancy.  相似文献   

6.
Although the role of renin in hypertension continues to be incompletely defined, recent progress in the chemistry of renin has been considerable. Extensive purifications of hog kidney renin and the renin-like mouse submaxillary gland enzyme have been achieved. Various inhibitory peptides based on tetradecapeptide renin substrate have been useful in renin kinetic studies and in renin affinity chromatography. Classification of renin as an acid protease results from its marked inhibition by pepstatin and from the discovery that free carboxyl at the active site is essential for activity in human and hog kidney and mouse submaxillary gland enzymes. The presence of pseudorenin in all tissues has limited the use of model peptides as renin substrates in plasma and crude tissue extracts, since the proteolytic properties of the two enzymes are nearly identical. The existence of renin in multiple, chromatographically separable forms has been known. More recently inactive forms have been found in plasma, amniotic fluid, and hog and rabbit kidneys. Prolonged storage or treatment with acid, trypsin, or pepsin causes activation; in some instances the conversion is from a higher than normal molecular weight. The implications of these findings with respect to the renin-angiotensin system need much further investigation.  相似文献   

7.
Under an initial interval of immobilization stress in rats, reciprocal changes of plasma active and inactive renin were observed, suggesting activation of circulating inactive renin. Molecular weight (MW) studies revealed that this activation might proceed via a MW shift from inactive renin with MW of 50,000 to active renin of MW 43,000. In a later interval of stress, under stimulated renin secretion, a lower MW form (38,000) of active renin was released into the circulation. This MW is close to that of active renin (39,000) found in rat kidney renin granules. In renin granules, equilibrated in fractions of 1.6 and 1.7 mol/L sucrose in discontinuous density gradient, trypsin-activatable renin activity formed 36 and 16% of total activity, respectively. In humans, under acute bicycle exercise, a lower MW form (39,000) of active renin was released into the circulation, while the content of inactive renin with MW in the range of 51,000-58,000 and at 47,000 did not substantially change. There was a slight decrease in circulating inactive renin passing through the kidney. The data suggest that, at least in rats, in vivo pathways for activation of inactive renin might exist, other than that proceeding before secretion from renin granules. Under the conditions of increased renin secretion, a lower MW form of active renin is mainly released into the circulation in both rats and humans.  相似文献   

8.
Renin: structural features of active enzyme and inactive precursor   总被引:1,自引:0,他引:1  
To determine the structural basis for the unique catalytic mechanism of renin and the mechanism of activation of inactive renin, renin and inactive renin were isolated in pure form. The active site of renin consists of two aspartyl residues, two tyrosyl residues, and one arginyl residue, analogous to pepsin and other acid proteases. The complete amino acid sequence of mouse submaxillary gland renin was determined. Of the amino acids, 43% were identical to those in porcine pepsin. Combination of various chromatographic techniques permitted the separation of inactive renin from active renin in human plasma and kidney. Inactive renin of hog kidney was completely purified. Inactive renin consists of a single polypeptide chain and is activated by proteolysis but not by dissociative reagents such as 4 M NaCl or detergent. Thus it was concluded that the inactive renin in these tissues is renin zymogen rather than a renin-inhibitor complex.  相似文献   

9.
The effect of prostacyclin infusion into the renal artery of the isolated perfused hog kidney on the release of active and inactive renin was investigated. Infusion of prostacyclin at a rate of 0.1 μg/min resulted in a significant increase (p<0.01) in active renin and a significant fall (p<0.01) in inactive renin. Prostacyclin also increased urinary kallikrein excretion (p<0.05). The results indicate that the kidney secretes not only active renin but also inactive renin, and suggest that prostacyclin stimulates the conversion of inactive renin to the active form through the activation of the renal kallikrein system.  相似文献   

10.
Pure human inactive renin. Evidence that native inactive renin is prorenin   总被引:1,自引:0,他引:1  
To clarify contradicting observations on the identity of inactive renin and prorenin, inactive renin was completely purified from native human chorion laeve and the culture medium of human chorion cells. A 720,000-fold purification with 14% recovery was achieved from chorion laeve in 6 steps, including immunoaffinity chromatography on a monoclonal antibody to human renin coupled to Protein A-Sepharose CL-4B. A 3,100-fold purification with 40% recovery was achieved from chorion culture medium in 4 steps, including immunoaffinity chromatography. Inactive renin purified from the two different sources migrated as a single protein band with the same molecular weight of 47,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and consisted of multiple components that could be resolved by isoelectric focusing. Both had the same pI values which shifted downward upon activation by trypsin; however, relative peak heights were different between the two preparations. The purified inactive renin from chorion laeve was completely inactive and did not bind to pepstatin-aminohexyl-Sepharose; however, that from chorion culture medium was partially active and completely bound to the pepstatin gel, indicating that each molecule is partially activated. Trypsin-activated inactive renins from both sources were identical with human renal renin in terms of pH optimum and Km. Specific activities of trypsin-activated inactive renin from chorion laeve and chorion culture medium were 529 Goldblatt units/mg of protein and 449 Goldblatt units/mg of protein, respectively. Amino acid sequence analysis of both of the purified inactive renin preparations demonstrated a leucine residue at the amino terminus. The sequence of 11 additional amino acids was identical in both and agreed with that predicted from the base sequence of the renin gene. These findings indicate that preprorenin is converted to prorenin following removal of a 23-amino acid signal peptide and that the native inactive renin, whose amino acid sequence commences with Leu-Pro-Thr..., is prorenin.  相似文献   

11.
To study the activation-inactivation mechanism of the renin zymogen, prorenin, a tertiary structural model of human prorenin was constructed using computer graphics and molecular dynamics calculations, based on the pepsinogen structure. This prorenin model shows that the folded prosegment polypeptide can fit into the substrate binding cleft of the renin moiety. The three positively charged residues, Arg 10, Arg 15, and Arg 20, in the prosegment make salt bridges with Asp 225, Glu 331, and Asp 60, respectively, in renin. Arg 43, which is in the processing site, forms salt bridges with the catalytic residues of Asp 81 and Asp 269. These ionic interactions between the prosegment and the renin may contribute to keeping the prorenin structure as an inactive form.  相似文献   

12.
Although many in vitro and animal studies indicate the existence of a local renin--angiotensin system, data regarding its physiological role are quite controversial, and moreover, evidence suggesting inactive and active renin release from vascular tissue in vivo is lacking both in animal and humans. The aim of our study was to evaluate whether beta-adrenoceptor stimulation, a well-known stimulus to renin production, through isoproterenol might cause local renin production from vessels of the forearm of hypertensive patients. Drugs were infused into the brachial artery at systemically ineffective rates, while forearm blood flow (FBF, venous plethysmography), mean intra-arterial pressure, and heart rate were monitored throughout. Active and inactive vessel renin production was measured by calculating venous-arterial (V-A) differences by simultaneous sampling from brachial artery and an ipsilateral deep vein. Active renin (PRA) and total renin (Sepharose bound trypsin activation) were measured by radioimmunoassay while inactive renin was calculated as the difference between total and active renin. V-A differences were corrected for FBF to calculate renin extraction or production. In a group of 10 patients, isoproterenol, which was infused at increasing cumulative rates (0.03, 0.1, 0.3 micrograms.100 mL-1 forearm tissue.min-1 for 5 min each), caused a dose-dependent increment in FBF that was blunted by intra-arterial propranolol (n = 5) pretreatment (10 micrograms.100 mL-1 forearm tissue.min-1 for 10 min). beta-Adrenoceptor stimulation caused a dose-dependent outflow of both active and inactive renin, an effect antagonized by propranolol. In conclusion, our data represent the first evidence in humans of tissue active and inactive renin production in the forearm vascular bed.  相似文献   

13.
A sequence-specific antibody that recognizes a portion of the prosegment of human renin precursor was raised and used to provide direct evidence that plasma inactive renin contains the prosequence of renal renin and is therefore probably prorenin rather than an inactivated form of previously active renin. The information may help not only to resolve a major controversy concerning the nature of inactive renin in human plasma but also to elucidate its exact physiological role.  相似文献   

14.
In a new method for measurement of inactive rat plasma renin, the trypsin generated angiotensin I immunoreactive material, which was HPLC characterized as similar to tetradecapeptide renin substrate, is removed by a cation exchange resin before the renin incubation step. The method also corrects for trypsin destruction of endogenous angiotensinogen by the addition of exogenous angiotensinogen. When measured with this method inactive renin in rat plasma decreased after nephrectomy and increased after adrenalectomy. This is in accordance with findings in humans. A sexual dimorphism of prorenin (inactive renin) in rat plasma, similar to that reported in humans and mice, was demonstrated. Thus, inactive renin in the rat is no exception among species, and the rat might be a suitable animal model for further studies dealing with the physiology of prorenin in plasma and tissues.  相似文献   

15.
The biosynthesis of a porcine renin binding protein (RnBP), which specifically binds to renin and forms an inactive high molecular weight renin, was investigated. mRNAs from various porcine tissues were used to investigate in vitro protein synthesis. The kidney mRNA directed the synthesis of a high level of RnBP, whereas the liver, adrenal and pituitary gland mRNAs gave as low but significant level of it. The in vitro synthesized RnBP as well as the immunologically detected RnBP synthesized in vivo had the same molecular weight, 42,000, as that of the purified protein. Moreover, both the human and rat kidney mRNAs directed the synthesis of this protein identified with an anti-porcine RnBP antibody. These results strongly indicate that RnBP, present in various mammalian species, is synthesized in renin-producing tissues as the mature size and undergoes binding with renin without proteolytic processing.  相似文献   

16.
A new form of active renin was separated from inactive prorenin in normal human plasma by a new affinity chromatographic method on a column of Cibacron Blue F3GA-agarose. This active renin has a molecular weight of 54,000, considerably higher than the hitherto recognized active renin of 40,000 dalton in human plasma. The molecular weight of inactive prorenin was 56,000±2,000. Active renin produced from the inactive prorenin by trypsin or pepsin digestion or by acid treatment in in vitro experiments showed a molecular weight of 54,000±2,000. Active renin with a molecular weight of 40,000 was not found in 6 samples of untreated plasma of normal human subjects nor was it formed by treatment with trypsin, pepsin, or acid pH. It is concluded that a large form of active renin (54,000 dalton) exists in normal human plasma which is distinct from a smaller form and that the activatable “big renin” is a mixture of this active renin and totally inactive prorenin. This explains the absence of molecular weight change during the activation of “big renin”.  相似文献   

17.
Divergent conclusions exist as to whether inactive renin is present in nephrectomized rat plasma. A major factor contributing to this conflict may be related to significant changes in the "plasma blank" when trypsin-treated plasma is subjected to angiotensin I (AI) radioimmunoassay (RIA). In normal, but not nephrectomized rat plasma, AI-like substances are present in direct proportion to active renin. These substances are destroyed by trypsin. However, trypsin generates additional AI-like material, in both normal and nephrectomized rat plasma. This material, which is present in proportion to the renin substrate concentration, does not appear to be tetradecapeptide (TDP). In normal plasma, however, exogenous TDP is converted to AI in proportion to the active renin concentration and AI generation from TDP is increased by activation of inactive renin. However, in nephrectomized rat plasma, no AI generation from TDP was evident either before or after trypsin treatment. The coincident tryptic generation of a substance that quenches the levels of AI detected by RIA, combined with significant changes in the levels of endogenous and trypsin generated AI-like substances, may have significant bearing on the measured levels of inactive renin.  相似文献   

18.
The effects of graded exercise on plasma concentrations of active and inactive renin were studied in seven healthy men. Exercise was performed on a cycle ergometer at four different exercise intensities (corresponding to 30%, 50%, 80% and 87% of VO2max) for 10 min each. Concentrations of active renin and total renin after activation by trypsin were measured by direct immunoradiometric assay. Non-trypsin-activated renin concentration (inactive) was obtained by subtraction. Active renin concentrations at 30%, 50%, 80% and 87% of VO2max were 1.2, 1.9, 3.1 and 4.6 times higher than the control concentration, respectively. Similar increases in plasma renin concentration, determined by conventional enzymatic assay, were observed at every stage. In contrast, changes in inactive renin concentration were not significant at any stage. Significant increases in noradrenaline concentration were found at every exercise stage, but adrenaline, aldosterone and lactate concentrations were significantly elevated only after exercise at 50%, 80% and 87% of VO2max. The similarity between the changes in concentration of active renin and noradrenaline would suggest that sympathetic nerve activity may have been responsible either for the release of active renin or for the conversion of inactive renin to its active form in the kidney.  相似文献   

19.
Hog renal inactive renin was separated from active renin and completely purified to an electrophoretically homogeneous state by using a new procedure which consisted of affinity chromatography on pepstatin-Sepharose, octyl-Sepharose, Affil-Gel blue and Con A-Sepharose columns, ion exchange chromatography and gel filtration. By this method a 3,000,000-fold purification was obtained with a 6% recovery from a crude kidney extract. This pure preparation was totally inactive and underwent marked activation by trypsin. It is a glycoprotein as judged by affinity to concanavalin A and has an apparent molecular weight of 50,000 as determined by gel filtration on Sephadex G-100. Treatment of the inactive renin with guanidine, urea and Triton X-100 did not cause activation indicating that the inactive renin isolated in the present study is not a product of renin-inhibitor complex.  相似文献   

20.
Two peptides were synthesized, corresponding to the sequences (-19 to -7) and (-26 to -17) of the prorenin prosegment. Monoclonal antibodies were raised to these sequences and used to characterize human plasma inactive renin. Only anti (-19 to -7) reacted with inactive renin, as measured by direct assay or affinity chromatography. The data were used to evaluate two possible inactive renin stuctures: plasma inactive renin is a truncated prorenin lacking the prosegment N-terminal portion; its spatial conformation masks the N-terminal extremity, preventing interaction of this region with specific antibodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号