首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The activity of ornithine decarboxylase and the intracellular concentrations of putrescine and spermidine in the non-ligated lobes of the liver increased after portal branch ligation. These changes were followed by increased [3H]thymidine uptake into the acid-insoluble fraction of the liver. The induction of ornithine decarboxylase and changes in intracellular polyamines are important biochemical events in liver regeneration, so our results suggest that portal branch ligation causes formation of some stimuli that trigger liver regeneration. Changes were less with ligation than with partial hepatectomy.  相似文献   

2.
3.
4.
5.
We have examined the effects of portal branch ligation on liver mitochondrial function and on subsequent extended hepatectomy in rat. In the occluded lobes, mitochondrial function was depressed immediately after the ligation. In the unoccluded lobes, mitochondrial function was enhanced and reached the maximum two days after the ligation. This enhancement was associated with increases in the enzymic activities and subunit amounts of the energy-transducing complexes, and with increase in mitochondrial DNA content. The ligation improved both survival rate and mitochondrial redox state monitored by the ratio of acetoacetate to beta-hydroxybutyrate after hepatectomy. These results suggest that the enhancement of mitochondrial function by portal branch ligation fills the energy demand for liver regeneration.  相似文献   

6.
7.
Portal hypertension has been studied in the rat to see if it is associated to altered blood volume composition, as it has been shown in other species. Plasma volume was measured by isotope dilution using 99mTc labelled albumin in three groups of male Sprague-Dawley rats: normal rats (controls), partially ligated portal vein rats and rats with Cl4C induced cirrhosis. Plasma volume was significantly higher in rats with portal hypertension due to partially ligated portal vein and cirrhosis than in control animals. Similarly, the calculated blood volume was also significantly higher in the portal hypertensive animals than in control group. Portal hypertension in the rat, therefore, has been demonstrated to be associated to a marked hypervolemia and this finding should be taken into consideration in haemodynamic and pharmacokinetic studies in portal hypertensive rat models.  相似文献   

8.
9.
10.
Whether glucagon-like peptide (GLP)-1 requires the hepatic portal vein to elicit its insulin secretion-independent effects on glucose disposal in vivo was assessed in conscious dogs using tracer and arteriovenous difference techniques. In study 1, six conscious overnight-fasted dogs underwent oral glucose tolerance testing (OGTT) to determine target GLP-1 concentrations during clamp studies. Peak arterial and portal values during OGTT ranged from 23 to 65 pM and from 46 to 113 pM, respectively. In study 2, we conducted hyperinsulinemic-hyperglycemic clamp experiments consisting of three periods (P1, P2, and P3) during which somatostatin, glucagon, insulin and glucose were infused. The control group received saline, the PePe group received GLP-1 (1 pmol.kg(-1).min(-1)) peripherally, the PePo group received GLP-1 (1 pmol.kg(-1).min(-1)) peripherally (P2) and then intraportally (P3), and the PeHa group received GLP-1 (1 pmol.kg(-1).min(-1)) peripherally (P2) and then through the hepatic artery (P3) to increase the hepatic GLP-1 load to the same extent as in P3 in the PePo group (n = 8 dogs/group). Arterial GLP-1 levels increased similarly in all groups during P2 ( approximately 50 pM), whereas portal GLP-1 levels were significantly increased (2-fold) in the PePo vs. PePe and PeHa groups during P3. During P2, net hepatic glucose uptake (NHGU) increased slightly but not significantly (vs. P1) in all groups. During P3, GLP-1 increased NHGU in the PePo and PeHa groups more than in the control and PePe groups (change of 10.8 +/- 1.3 and 10.6 +/- 1.0 vs. 5.7 +/- 1.0 and 5.4 +/- 0.8 micromol.kg(-1).min(-1), respectively, P < 0.05). In conclusion, physiological GLP-1 levels increase glucose disposal in the liver, and this effect does not involve GLP-1 receptors located in the portal vein.  相似文献   

11.

Background

It is generally accepted that an insufficient future liver remnant is a major limitation of large-scale hepatectomy for patients with primary hepatocellular carcinoma. Conventional two-stage hepatectomy (TSH) is commonly considered to accelerate future liver regeneration despite its low regeneration rate. Associating liver partition and portal vein ligation for staged hepatectomy (ALPPS), which is characterized by a rapid regeneration, has brought new opportunities.

Methods

Relevant studies were identified by searching the selected databases up to September 2017. Then, a meta-analysis of regeneration efficiency, complication rate, R0 resection ratio, and short-term outcomes was performed.

Results

Ten studies, comprising 719 patients, were included. The overall analysis showed that ALPPS was associated with a larger hyperplastic volume and a shorter time interval (P?<?0.00001) than TSH. ALPPS also exhibited a higher completion rate for second-stage operations (odds ratio, OR 9.50; P?<?0.0001) and a slightly higher rate of R0 resection (OR 1.90; P?=?0.11). Interestingly, there was no significant difference in 90-day mortality between the two treatments (OR 1.44; P?=?0.35).

Conclusions

These results indicate that compared with TSH, ALPPS possesses a stronger regenerative ability and better facilitates second-stage operations. However, the safety, patient outcomes, and patient selection for ALPPS require further study.
  相似文献   

12.
13.
This study evaluated the effects of flavone eupafolin (6-methoxy 5,7,3',4'-tetrahydroxyflavone), extracted from dry leaves of Eupatorium litoralle. Eupafolin (25-200microM) promoted inhibition of the respiratory rate in state 3, in the presence of glutamate or succinate. During succinate oxidation, it was found that only state 4 respiratory rate was stimulated approximately 30% by eupafolin (100microM) and ADP/O ratio and RCC were reduced with all doses. When glutamate was used as substrate, RCC was similarly reduced. Eupafolin caused a reduction of enzymatic activities between complexes I and III of the respiratory chain. Cytochrome c oxidase and ATPase activities were not affected. Using voltammetry cyclic analysis, eupafolin give rise to irreversible oxidation with an anodic peak potential at +0.08V (SHE). We also observed that eupafolin can undergo oxidation catalyzed by EDTA-Fe, promoting cytochrome c reduction in the presence of NADH, resulting in the production of the superoxide radical and hydrogen peroxide. All together, the results could explain the cytotoxic effects observed previously with the eupafolin.  相似文献   

14.
15.
16.
The present study was undertaken to investigate hepatic microcirculatory response following partial portal vein ligation (PPVL) in rats. Portal pressure was markedly increased 2-6 wk after PPVL, but no significant reduction in sinusoidal perfusion and hepatocellular injury were detected. However, marked neovascularization was observed in PPVL rats using intravital microscopy and scanning electron microscopy (SEM). Extremely high red blood cell velocity (2,000-4,900 microm/s) was seen in these vessels. Injection of fluorescein sodium via the carotid artery revealed that the neovessels originated from the hepatic arterial vasculature. This was further confirmed by clamping the common hepatic artery and phenylephrine injection from the carotid artery. These vessels maintained sufficient flow after massive sinusoidal shutdown elicited by the portal infusion of endothelin receptor B agonist IRL-1620. SEM also showed extensive neovascularization at the hilum. Additionally, clamping the portal vein decreased sinusoidal perfusion only by 9.5% in PPVL, whereas a 71.2% decrease was observed in sham. These results strongly suggest that the liver maintains its microcirculatory flow by vascular remodeling from the hepatic arterial vasculature following PPVL.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号