共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Alessandro Chiarucci 《Folia Geobotanica》2007,42(2):209-216
Lájer (2007) raised the problem of using a non-random sample for statistical testing of plant community data. He argued that this violates basic assumptions of the tests, resulting thus in non-significant results. However, a huge part of present-day knowledge of vegetation science is still based on non-random, preferentially collected data of plant communities. I argue that, given the inherent limits of preferential sampling, a change of approach is now necessary, with the adoption of sampling based on random principles seeming the obvious choice. However, a complete transition to random-based sampling designs in vegetation science is limited by the yet undefined nature of plant communities and by the still diffused opinion that plant communities have a discrete nature. Randomly searching for such entities is almost impossible, given their dependence on scale of observation, plot size and shape, and the need for finding well-defined types. I conclude that the only way to solve this conundrum is to consider and study plant communities as operational units. If the limits of the plant communities are defined operationally, they can be investigated using proper sampling techniques and the collected data analyzed using adequate statistical tools. 相似文献
4.
Bernard Perbal 《Journal of cell communication and signaling》2016,10(4):337-340
The human gut microflora has drawn a lot of attention as a potent therapeutic tool for many decades. More recently, efforts have been developed to devise efficient ways of complementing or replacing deficient intestinal microflora associated with intestinal diseases that are resistant to conventional medical treatments. Aside from the medical and industrial applications that emerged from the use of gut microbiota, the complex constitution of this ecosystem raises fascinating questions regarding host-cell communication and host response mechanisms to the ever changing environment. This brief comment also points to questions raised by some unexpected applications that have recently emerged from this field. 相似文献
5.
Bacteria are able to survive in low-iron environments by sequestering this metal ion from iron-containing proteins and other biomolecules such as transferrin, lactoferrin, heme, hemoglobin, or other heme-containing proteins. In addition, many bacteria secrete specific low molecular weight iron chelators termed siderophores. These iron sources are transported into the Gram-negative bacterial cell through an outer membrane receptor, a periplasmic binding protein (PBP), and an inner membrane ATP-binding cassette (ABC) transporter. In different strains the outer membrane receptors can bind and transport ferric siderophores, heme, or Fe3+ as well as vitamin B12, nickel complexes, and carbohydrates. The energy that is required for the active transport of these substrates through the outer membrane receptor is provided by the TonB/ExbB/ExbD complex, which is located in the cytoplasmic membrane. In this minireview, we will briefly examine the three-dimensional structure of TonB and the current models for the mechanism of TonB-dependent energy transduction. Additionally, the role of TonB in colicin transport will be discussed. 相似文献
6.
7.
8.
Amaia Lujambio 《BioEssays : news and reviews in molecular, cellular and developmental biology》2016,38(Z1):S56-S64
Cellular senescence is an anti‐proliferative program that restricts the propagation of cells subjected to different kinds of stress. Cellular senescence was initially described as a cell‐autonomous tumor suppressor mechanism that triggers an irreversible cell cycle arrest that prevents the proliferation of damaged cells at risk of neoplastic transformation. However, discoveries during the last decade have established that senescent cells can also impact the surrounding tissue microenvironment and the neighboring cells in a non‐cell‐autonomous manner. These non‐cell‐autonomous activities are, in part, mediated by the selective secretion of extracellular matrix degrading enzymes, cytokines, chemokines and immune modulators, which collectively constitute the senescence‐associated secretory phenotype. One of the key functions of the senescence‐associated secretory phenotype is to attract immune cells, which in turn can orchestrate the elimination of senescent cells. Interestingly, the clearance of senescent cells seems to be critical to dictate the net effects of cellular senescence. As a general rule, the successful elimination of senescent cells takes place in processes that are considered beneficial, such as tumor suppression, tissue remodeling and embryonic development, while the chronic accumulation of senescent cells leads to more detrimental consequences, namely, cancer and aging. Nevertheless, exceptions to this rule may exist. Now that cellular senescence is in the spotlight for both anti‐cancer and anti‐aging therapies, understanding the precise underpinnings of senescent cell removal will be essential to exploit cellular senescence to its full potential. 相似文献
9.
Mads S. Thomsen Thomas Wernberg Paul M. South David R. Schiel 《Biological invasions》2016,18(6):1515-1521
An increasing number of studies report impacts from invasive species on community metrics or ecosystem functions. We draw attention to an issue arising whenever impact is measured on a community where the invader is an integrated part: should or shouldn’t the attributes of the invader itself be included in the data-analysis? We identify many examples from the published literature showing inconsistency in whether or not data for the invader is included or excluded, and discuss potential implications for ecological interpretations. We also provide a case study to show that the invasive seaweed Undaria pinnatifida can be interpreted to have strong or no impact on seaweed communities, depending on its inclusion or exclusion in the data analysis. We conclude that it is critical for studies to (1) clearly state in the methods section, if the invaders are included or excluded from the data-analysis, (2) acknowledge potential differences in outcomes when comparing results based on different methods, and (3) analyze, if possible, impacts both with and without the invader. Finally, we note that this ‘inclusion versus exclusion’ conundrum is not only relevant to invasion biology, but to any field where the test-object of interest can be an integrated part of the response, such as when impact of seaweed blooms are analysed on community productivity or community effects are quantified over time from ecological pulse-perturbation experiments. 相似文献
10.
Mark R. Bell Mark J. Engleka Asim Malik James E. Strickler 《Protein science : a publication of the Protein Society》2013,22(11):1466-1477
Since the dawn of time, or at least the dawn of recombinant DNA technology (which for many of today''s scientists is the same thing), investigators have been cloning and expressing heterologous proteins in a variety of different cells for a variety of different reasons. These range from cell biological studies looking at protein-protein interactions, post-translational modifications, and regulation, to laboratory-scale production in support of biochemical, biophysical, and structural studies, to large scale production of potential biotherapeutics. In parallel, fusion-tag technology has grown-up to facilitate microscale purification (pull-downs), protein visualization (epitope tags), enhanced expression and solubility (protein partners, e.g., GST, MBP, TRX, and SUMO), and generic purification (e.g., His-tags, streptag, and FLAG™-tag). Frequently, these latter two goals are combined in a single fusion partner. In this review, we examine the most commonly used fusion methodologies from the perspective of the ultimate use of the tagged protein. That is, what are the most commonly used fusion partners for pull-downs, for structural studies, for production of active proteins, or for large-scale purification? What are the advantages and limitations of each? This review is not meant to be exhaustive and the approach undoubtedly reflects the experiences and interests of the authors. For the sake of brevity, we have largely ignored epitope tags although they receive wide use in cell biology for immunopreciptation. 相似文献
11.
Mucins are macromolecules lying the cells in contact with external environment and protect the epithelium against constant attacks such as digestive fluids, microorganisms, pollutants, and toxins. Mucins are the main components of mucus and are synthesized and secreted by specialized cells of the epithelium (goblet cells, cells of mucous glands) or non mucin-secreting cells. Human mucin genes show common features: large size of their mRNAs, large nucleotide tandem repeat domains, complex expression both at tissular and cellular level. Since 1987, 21 MUC symbols have been used to designate genes encoding O-glycoproteins containing tandem repeat domains rich in serine, threonine and proline. Some of these genes encode true mucins while others encode non mucin adhesion O-glycoproteins. In this paper, we propose a classification based on sequence similarities and expression areas. Two main families can be distinguished: secreted mucins or gel-forming mucins (MUC2, MUC5AC, MUC5B, MUC6), and membrane-bound mucins (MUC1, MUC3, MUC4, MUC12, MUC17). Muc-deficient mice will provide important models in the study of functional relationships between these two mucin families. 相似文献
12.
Vertebrates express two families of gap junction proteins: the well characterized connexins and the recently discovered pannexins. The latter are related to invertebrate innexins. Here we present the hypothesis that pannexins, rather than providing a redundant system to gap junctions formed by connexins, exert a physiological role as nonjunctional membrane channels. Specifically, we propose that pannexins can serve as ATP release channels. This function presumptively is also performed by innexins in invertebrates, in addition to their traditional gap junction role. 相似文献
13.
Clark CG 《The Physiologist》2010,53(6):211-212
14.
《Biotechnology advances》2017,35(2):251-266
Oxidation of the primary OH groups in cellulose is a pivotal reaction both at lab and industrial scale, leading to the value-added products, i.e. oxidized cellulose which have tremendous applications in medicine, pharmacy and hi-tech industry. Moreover, the introduction of carboxyl moieties creates prerequisites for further cellulose functionalization through covalent attachment or electrostatic interactions, being an essential achievement designed to boost the area of cellulose-based nanomaterials fabrication. Various methods for the cellulose oxidation have been developed in the course of time, aiming the selective conversion of the OH groups. These methods use: nitrogen dioxide in chloroform, alkali metal nitrites and nitrates, strong acids alone or in combination with permanganates or sodium nitrite, ozone, and sodium periodate or lead (IV) tetraacetate. In the case of the last two reagents, cellulose dialdehydes derivatives are formed, which are further oxidized by sodium chlorite or hydrogen peroxide to form dicarboxyl groups. A major improvement in the cellulose oxidation was represented by the introduction of the stable nitroxyl radicals, such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). However, a major impediment for the researchers working in this area is related with the severe depolymerisation occurred during the TEMPO-mediated conversion of CH2OH into COOH groups. On the other hand, the cellulose depolymerisation represent the key step, in the general effort of searching for alternative strategies to develop new renewable, carbon-neutral energy sources. In this connection, exploiting the biomass feed stocks to produce biofuel and other low molecular organic compounds, involves a high amount of research to improve the overall reaction conditions, limit the energy consumption, and to use benign reagents. This work is therefore focused on the parallelism between these two apparently antagonist processes involving cellulose, building a necessary bridge between them, thinking how the reported drawbacks of the TEMPO-mediated oxidation of cellulose are heading towards to the biomass valorisation, presenting why the apparently undesired side reactions could be turned into beneficial processes if they are correlated with the existing achievements of particular significance in the field of cellulose conversion into small organic compounds, aiming the general goal of pursuing for alternatives to replace the petroleum-based products in human life. 相似文献
15.
Silverman J Doyle RE Crispino C Gerow L Batchelder M Dohm E 《Lab animal》2002,31(5):19-21; discussion 21
16.
The ability to engineer proteins with increased thermostability will profoundly broaden their practical applications. Recent experimental results show that optimization of charge-charge interactions on the surface of proteins can be a useful strategy in the design of thermostable enzymes. Results also indicate a possibility that such optimized interactions provide structural determinants for enhanced stability of proteins from thermophilic organisms. In this article, the general strategy for design of thermostable proteins and perspectives for future studies are discussed. 相似文献
17.
18.
19.
20.