首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The degradation of DNA by bleomycin was studied in the absence and in the presence of added reducing agents, including 2-mercaptoethanol, dithiothreitol, reduced nicotinamide adenine dinucleotide phosphate, H2O2, and ascorbate, and in the presence of a superoxide anion generating system consisting of xanthine oxidase and hypoxanthine. In all cases, breakage of DNA was inhibited by low concentrations of chelators; where examined in detail, deferoxamine mesylate was considerably more potent than (ethylenedinitrilo)tetraacetic acid. Iron was found to be present in significant quantities in all reaction mixtures. Thus, the pattern of inhibition observed is attributed to the involvement of contaminating iron in the degradation of DNA by bleomycin. Cu(II), Zn(II), and Co(II) inhibit degradation of DNA by bleomycin and Fe(II) in the absence of added reducing agents. A model is proposed in which the degradation of DNA in these systems is dependent on the oxidation of an Fe(II)-bleomycin-DNA complex.  相似文献   

2.
DNA was treated with bleomycin in the presence of Fe2+ and 2-mercaptoethanol under conditions where only a few percent of the bases were released. Release of all four bases was a linear function of bleomycin concentration, but the amount of thymine released was twice that of cytosine, 7 times that of adenine, and twelve times that of guanine. Unidentified minor products of thymine, of cytosine and of a purine were also released. Bromouracil did not sensitize DNA to bleomycin-induced breakage, and was released at the same rate as thymine.  相似文献   

3.
Growth inhibition and cell killing by bleomycin are believed to be related to the ability of this antibiotic to cleave chromosomal DNA. Because bleomycin has an intracellular site of action, its ability to cross biological membranes must be critical to its overall effectiveness as an antitumor agent. The local anesthetic dibucaine acts to enhance membrane fluidity; therefore, the reported ability of this local anesthetic to modulate bleomycin effects on KB cells was investigated. Cells were treated with various bleomycin congeners in the presence or absence of dibucaine for 24 h. Dibucaine enhanced the inhibition of cell growth mediated by bleomycin A2, demethylbleomycin A2, bleomycin B2, and isobleomycin A2. N-Acetylbleomycin A2 did not inhibit cell growth in the absence of dibucaine, but it was inhibitory in the presence of dibucaine. Cells treated simultaneously for analysis of DNA breakage on alkaline sucrose gradients revealed that breakage was also enhanced in the presence of dibucaine. The degree of enhancement varied with dose and bleomycin congener. N-Acetylbleomycin A2 did not induce DNA breakage in either the absence or the presence of dibucaine. While growth inhibition and net DNA breakage correlated reasonably well in the absence of dibucaine for each bleomycin analogue tested, proportionality was lost in the presence of dibucaine, and very little DNA breakage was present when growth inhibition was complete. These observations imply that, at least in the presence of dibucaine, bleomycin may mediate growth inhibition at some locus in addition to chromosomal DNA and, also, that a given net amount of bleomycin analogue induced DNA damage per se does not produce a specific degree of growth inhibition.  相似文献   

4.
The interaction of bleomycin A2 with rat lung microsomes results in bleomycin-mediated DNA chain breakage due to the mixed-function oxidase catalyzed activation of bleomycin. This study demonstrates that the addition of exogenous Fe3+ significantly enhances the bleomycin-mediated cleavage of DNA deoxyribose, that the enhancing effect of Fe3+ is maximum when a 1:1 ratio of bleomycin to Fe3+ is achieved and that either NADPH or NADH can serve as pyridine cofactors for this reaction. Since the activation of bleomycin can be facilitated by iron in the Fe2+ form, these observations support the hypothesis that the mixed-function oxidase system may serve to maintain either adventitious or exogenous iron in the Fe2+ form. In the absence of DNA, the interaction of bleomycin with rat lung microsomes results in the self-inactivation of bleomycin, a reaction which is also enhanced by the addition of exogenous Fe3+. Thus, the microsomal mixed-function oxidase system represents an efficient biological system for the ‘activation-inactivation’ of bleomycin.  相似文献   

5.
The role of epidermal microsomal enzymes in catalyzing bleomycin-mediated chain breakage in calf-thymus DNA and in DNA isolated from neonatal rat epidermis was studied. Aerobic incubation of bleomycin with epidermal microsomes, epidermal or calf-thymus DNA and NADPH caused substantial chain breakage of the DNA which was dependent upon concentrations of drug, microsomal protein and NADPH. The reactive oxygen scavenger superoxide dismutase, the metal chelator EDTA, and cytochrome c each inhibited the enzyme-mediated chain breakage reaction. Scavengers of hydrogen peroxide and hydroxyl radicals, including catalase and benzoate and inhibitors of microsomal cytochrome P-450-dependent monooxygenases such as 1-benzylimidazole, metyrapone and alpha-naphthoflavone, had no inhibitory effects on bleomycin-mediated DNA chain breakage. In contrast, ascorbic acid significantly enhanced DNA damage by bleomycin. These studies indicate that mammalian epidermis possesses membrane-bound enzyme activity capable of enhancing bleomycin-mediated chain breakage of DNA and that oxidation/reduction of adventitious iron and generation of reactive oxygen participate in the reaction. These responses in the epidermis could directly relate to the mechanism of action of intralesional injections of bleomycin which are used quite effectively in the management of recalcitrant human warts. Either epidermal or wart virus DNA or both could be targets for this pharmacologic effect of the drug which is augmented by epidermal microsomal enzymes.  相似文献   

6.
In vitro DNA chain breakage by bleomycin was enhanced by the addition of xanthine oxidase system. The effect of the xanthine oxidase system disappeared completely when superoxide dismutase was added, but not when catalase was added. From these results it is concluded that superoxide radical is one of the chemical mediators responsible for the enhancement of the DNA chain breakage action of bleomycin.  相似文献   

7.
L M Fisher  R Kuroda  T T Sakai 《Biochemistry》1985,24(13):3199-3207
The association of the antitumor antibiotic bleomycin A2 with DNA has been investigated by employing several 2-substituted thiazole-4-carboxamides, structurally related to the cationic terminus of the drug. With a 5'-32P-labeled DNA restriction fragment from plasmid pBR322 as substrate, these compounds have been shown to inhibit bleomycin-induced DNA breakage. Analogues possessing 2'-aromatic substituents on the bithiazole ring were more potent inhibitors than those carrying 2'-aliphatic groups, e.g., the acetyl dipeptide A2. The degree of inhibition was similar at all scission sites on DNA, and inclusion of the analogues did not induce bleomycin cleavage at new sites. DNA binding of bithiazole derivatives has also been studied by two complementary topological methods. Two-dimensional gel electrophoresis using a population of DNA topoisomers and DNA relaxation experiments involving calf thymus DNA topoisomerase I and pBR322 DNA reveal that bleomycin bithiazole analogues unwind closed circular duplex DNA. The inhibition and unwinding studies together support recent NMR studies suggesting that both bleomycin A2 and synthetic bithiazole derivatives bind to DNA by an intercalative mechanism. The results are discussed in relation to the DNA breakage properties of bleomycin A2.  相似文献   

8.
The effects of reducing agents, such as 2-mercaptoethanol, dithiothreitol, L-ascorbic acid, or sodium borohydride, and oxidizing agents, such as hydrogen peroxide or dehydroascorbic acid, on the in vitro action of bleomycin were investigated. After the incubation of DNA with a low concentration of bleomycin and a reducing or oxidizing agent, single strand breaks were mainly caused in the DNA molecules. The degradation of DNA was largely prevented by the removal of oxygen, or by the addition of divalent cations or of S-(2-aminoethyl)isothiuronium bromide hydrobromide, a radical scavenger, to the incubation mixture. Preincubation of bleomycin with these reducing or oxidizing agents reduced the DNA-degrading activity of the antibiotic. However, this reduction in activity was observed even in the absence of oxygen, or in preincubation mixture supplemented with radical scavenger.  相似文献   

9.
We have designed and synthesized a series of novel DNA photocleaving agents which break DNA with high sequence specificity. These compounds contain the non-diffusible photoactive p-nitrobenzoyl group covalently linked via a dimethylene (or tetramethylene) spacer to thiazole analogues of the DNA binding portion of the antibiotic bleomycin A2. By using a variety of 5' or 3' 32P-end labeled restriction fragments from plasmid pBR322 as substrate, we have shown that photoactive bithiazole compounds bind DNA at the consensus sequence 5'-AAAT-3' and induce DNA cleavage 3' of the site. Analysis of cleavage sites on the complementary DNA strand and inhibition of DNA breakage by distamycin A indicates these bithiazole derivatives bind and attack the minor groove of DNA. A photoactive unithiazole compound was less specific inducing DNA breakage at the degenerate site 5'-(A/T)(AA/TT)TPu(A/T)-3'. DNA sequence recognition of these derivatives appears to be determined by the thiazole moiety rather than the p-nitrobenzoyl group: use of a tetramethylene group in place of a dimethylene spacer shifted the position of DNA breakage by one base pair. Moreover, much less specific DNA photocleavage was observed for a compound in which p-nitrobenzoyl was linked to the intercalator acridine via a sequence-neutral hexamethylene spacer. The 5'-AAAT-3' specificity of photoactive bithiazole derivatives contrasts with that of bleomycin A2 which cleaves DNA most frequently at 5'-GPy-3' sequences. These results suggest that the cleavage specificity exhibited by bleomycin is not simply determined by its bithiazole/sulphonium terminus, and the contributions from other features, e.g. its metal-chelating domain, must be considered. The novel thiazole-based DNA cleavage agents described here should prove useful as reagents for probing DNA structure and for elucidating the molecular basis of DNA recognition by bleomycin and other ligands.  相似文献   

10.
C W Moore 《Biochemistry》1990,29(5):1342-1347
The contribution of DNA repair to the net number of DNA breaks produced during chemical degradation of DNA was determined by using temperature-sensitive mutant cells deficient in ATP-dependent DNA ligase [poly(deoxyribonucleotide):poly(deoxyribonucleotide) ligase, EC 6.5.1.1]. In a very sensitive assay for determining lesions introduced into Saccharomyces cerevisiae DNAs, 2-14C- and 6-3H-prelabeled DNAs from ligase-proficient and ligase-deficient cells were sedimented together through precalibrated, isokinetic alkaline sucrose gradients. DNA ligation was slower after chemical degradation of DNA by bleomycin than after gamma irradiation. DNA breaks increased approximately linearly with drug concentrations, and were approximately equivalent for ligase-proficient and ligase-deficient cells. These results were unexpected because ligase-deficient, but not ligase-proficient, cells lacked the capacity to eliminate DNA breaks produced by bleomycin. The results indicated that DNA repair did not occur during the chemical degradation of DNA under the experimental conditions. Bleomycin B2 produced considerably more DNA breaks than bleomycin A2 over a range of concentrations in ligase-proficient cells, which tolerated higher numbers of DNA breaks in general than ligase-deficient cells. The chemical analogues are structurally identical except for their cationic C-terminal amine. The actual number of DNA breaks produced by bleomycin A2 or bleomycin B2, and not the concentration of bleomycin A2 or bleomycin B2 per se, determined the amount of cell killing. DNA repair is critical in quantitating DNA breaks produced by chemicals, but was ruled out as a factor in the higher DNA breakage by bleomycin B2 than bleomycin A2.  相似文献   

11.
The cancer chemotherapeutic agent, bleomycin, cleaves DNA at specific sites. For the first time, the genome-wide DNA sequence specificity of bleomycin breakage was determined in human cells. Utilising Illumina next-generation DNA sequencing techniques, over 200 million bleomycin cleavage sites were examined to elucidate the bleomycin genome-wide DNA selectivity. The genome-wide bleomycin cleavage data were analysed by four different methods to determine the cellular DNA sequence specificity of bleomycin strand breakage. For the most highly cleaved DNA sequences, the preferred site of bleomycin breakage was at 5′-GT* dinucleotide sequences (where the asterisk indicates the bleomycin cleavage site), with lesser cleavage at 5′-GC* dinucleotides. This investigation also determined longer bleomycin cleavage sequences, with preferred cleavage at 5′-GT*A and 5′- TGT* trinucleotide sequences, and 5′-TGT*A tetranucleotides. For cellular DNA, the hexanucleotide DNA sequence 5′-RTGT*AY (where R is a purine and Y is a pyrimidine) was the most highly cleaved DNA sequence. It was striking that alternating purine–pyrimidine sequences were highly cleaved by bleomycin. The highest intensity cleavage sites in cellular and purified DNA were very similar although there were some minor differences. Statistical nucleotide frequency analysis indicated a G nucleotide was present at the ?3 position (relative to the cleavage site) in cellular DNA but was absent in purified DNA.  相似文献   

12.
Belomycin is a glycopeptide antibiotic routinely used to treat human cancer. It is commonly thought to exert its biological effects as a metallodrug, which oxidatively damages DNA. This review systematically examines the properties of bleomycin which contribute to its reaction with DNA in vitro and may be important in the breakage of DNA in cells. Because strand cleavage results from the reductive activation of dioxygen by metallobleomycins, the mechanism of this process is given primary attention. Current understanding of the structures of the coordination sites of various metallobleomycins, their thermodynamic stabilities, their propensity to form adduct species, and their properties in ligand substitution reactions provide a foundation for consideration of the chemistry of dioxygen activation as well as a basis for thinking about the metal-speciation of bleomycin in biological systems. Oxidation-reduction pathways of iron-bleomycin, copper-bleomycin, and other metal-bleomycin species with O2 are then examined, including information on photochemical activation. With this background, structural and thermodynamic features of the binding interactions of DNA with bleomycin, its metal complexes, and adducts of metallobleomycins are reviewed. Then, the DNA cleavage reaction involving iron-bleomycin is scrutinized on the basis of the preceding discussion. Particular emphasis is placed on the constraints which the presence of DNA places on the mechanism of dioxygen activation. Similarly, the reactions of other metalloforms of bleomycin with DNA are reviewed. The last topic is an analysis of current understanding of the relationship of bleomycin-induced cellular DNA damage to the model developed above, which has evolved on the basis of chemical experimentation. Consideration is given to the question of the importance of DNA strand breakage caused by bleomycin for the mechanism of cytotoxic activity of the drug.  相似文献   

13.
In vitro degradation of DNA to acid soluble products was induced by the combined action of neocarzinostatin and sulfhydryl agent as 2-mercaptoethanol, dithiothreitol, or reduced glutathione, but not other reducting agent as ascorbic acid or NaBH4. From the analysis by Sephadex G-10 gel filtration, acid soluble products were found to be thymine and oligonucleotide, but not thymidylic acid and thymidine. Release of adenine or guanine from DNA was not detected.From these results, it is suggested that DNA chain breakage by the combined action of neocarzinostatin and 2-mercaptoethanol may be due to an indirect phosphodiester bond breakage with release of thymine.  相似文献   

14.
Intrinsic DNA-dependent ATPase activity of reverse gyrase   总被引:4,自引:0,他引:4  
Reverse gyrase is a type I DNA topoisomerase that promotes positive supercoiling of closed-circular double-stranded DNA through an ATP-dependent reaction, and it was purified from an archaebacterium, Sulfolobus. When ATP is replaced by UTP, GTP, or CTP, this enzyme just relaxes the negatively supercoiled closed-circular double-stranded DNA. We found that reverse gyrase hydrolyzes ATP through a double-stranded DNA-dependent reaction. The superhelicity of the DNA did not affect the ATPase activity. However, reverse gyrase does not hydrolyze UTP, GTP, or CTP. Therefore, any of the four nucleotide 5'-triphosphates acts as an effector for the topoisomerase activity of reverse gyrase, but only ATP supports the positive supercoiling of closed-circular double-stranded DNA, through the energy released on its hydrolysis. Single-stranded DNA was a much more potent cofactor for the ATPase activity of the enzyme than double-stranded DNA, and it acted as a potent inhibitor for the topoisomerase activity on double-stranded DNA. These results indicate that reverse gyrase has higher affinity to single-stranded DNA than to double-stranded DNA, which suggests a cellular function of the enzyme.  相似文献   

15.
A marked increase in sensitivity to bleomycin was observed in two ataxia telangiectasia (AT) lymphoblastoid cell lines compared to that in cell lines from two normal individuals. This sensitivity was obtained at two different concentrations of bleomycin. While normal cells showed a rapid recovery of ability to divide, there was no indication of such a recovery in AT cells up to 120 h after bleomycin treatment. A similar level of breakage of DNA occurred in both cell types after incubation with bleomycin. The rate of repair of these breaks was also the same. DNA synthesis was found to be more resistant to bleomycin in AT cells than in control cells. The latter data are in keeping with results previously obtained using ionizing radiation.  相似文献   

16.
The copper(II) complex of the clinically used antitumor agent bleomycin (Blm) has cytotoxic as well as antitumor properties. To understand the relationship of the bleomycin ligand, copper bleomycin, and other possible metal complexes of this agent, kinetic studies of the formation of Cu(II)Blm, ligand substitution reactions of CuBlm with ethylenediaminetetraaletic acid, and the redox reaction of CuBlm with thiols have been completed and interpreted along with previous studies of the thermodynamic stability of Cu2+ with bleomycin. Cu(II)Bm is found to be kinetically and thermodynamically stable in ligand substitution processes and is only slowly reduced and dissociated by sulfhydryl reagents. The rate constant of reduction of the complex by 2-mercaptoethanol (2-ME) at pH 7.4 and 25 degrees C is 9.5 X 10(-3) M-1 sec-1, explaining the inhibition of Fe2+-dependent strand scission of DNA by Cu2+ in the presence of 2-ME. CuBlm forms in preference to Fe(II)Blm and cannot be reduced and dissociated rapidly enough by thiols to liberate Blm and form the reactive iron complex. In agreement with the observed chemical stability of CuBlm, it is also shown that the complex is stable in human plasma and in the presence of Ehrlich cells suspended in ascites fluid. Interestingly, little CuBlm enters these cells to carry out cytotoxic reactions. Finally, it is shown that both Cu2+ and Zn2+, at equivalent concentrations to Fe2+, effectively inhibit the strand scission of DNA by Fe(II)Blm plus oxygen. However, at substoichiometric amounts of Cu2+, the ferroxidase activity of Blm enables the drug to remain effective in the strand-scission reaction, despite the lowered Cu-free Blm/Fe2+ ratio. These results are discussed in light of the proposed mechanism of action of bleomycin.  相似文献   

17.
We examined the fragmentation of DNA treated with N-methyl-N-nitrosourea under conditions in which Ca2+, Mg2+-dependent endonuclease is active. The molecular mass of DNA found in mouse liver slices treated with methylnitrosurea in the presence of Ca2+ plus Mg2+ was 4 X 10(5) Da. Similar results were obtained with a reconstituted system containing partially purified Ca2+, Mg2+-dependent endonuclease and methylnitrosurea-treated DNA. The enzyme extensively cleaved methylnitrosurea-treated DNA, compared with non-treated DNA. The methylnitrosurea-treated nuclear proteins obtained from mouse liver nuclei had no effect on the DNA fragmentation by the enzyme. Using closed-circular DNA treated with methylnitrosurea, the enzyme produced single-strand cuts in the DNA, as was seen in non-treated, closed-circular DNA, however, the rate of hydrolysis was increased. Ca2+, Mg2+-dependent endonuclease thus warrants further investigation, with regard to the precise mechanism of extensive degradation of DNA in cells treated with carcinogenic alkylating agents.  相似文献   

18.
The aerobic oxidation of Co(II)bleomycin bound to calf thymus DNA has been investigated in relation to the mechanism of reaction in solution in the absence of DNA. Kinetics of dioxygenation of the Co(II) complex were followed by spectrophotometric and electron spin resonance spectroscopy as well as dioxygen analysis. The reaction is slower than when carried out in solution; its rate is inversely related to the ratio of DNA base pairs to Co(II)bleomycin. The subsequent oxidation reaction, observed spectrophotometrically and by dioxygen analysis, is second order in cobalt complex. The calculated second order rate constant is also inversely related to the base pair to metal complex ratio. Once this ratio exceeds three, the reaction rate slows significantly with each additional increment of DNA added to the starting reaction mixture. Taking advantage of the high stability of O(2)-Co(II)bleomycin bound to greater than a 3-fold excess of DNA base pairs, it could be demonstrated that the rate constant for oxidation of two O(2)-Co(II)bleomycin molecules is much slower than that for O(2)-Co(II)bleomycin plus Co(II)bleomycin. With the same technique it was observed that the metal centers of O(2)-Co(II)bleomycin and Fe(II)bleomycin also undergo oxidation. The binding to DNA of both solution products of the oxidation of Co(II)bleomycin by O2 was examined by 1H NMR spectroscopy. Peroxy-Co(III)bleomycin, Form I, binds with higher affinity than Co(III)bleomycin, Form II. At lower ionic strength, the size of the DNA binding site for each form is about 2 base pairs/molecule of drug.  相似文献   

19.
Fe(III)-bleomycin associates strongly with rat liver nuclei and binds to nuclear DNA. Metal-free and Cu(II)-bleomycin, however, do not bind to nuclei. The treatment of nuclei with activated iron-bleomycin results in nucleic base and base propenal release from the DNA, and also gives membrane peroxidation. Isolation and quantitation of the base propenals and free bases released subsequent to activated bleomycin treatment reveal an alteration in the stoichiometry of these products compared to those released from purified DNA. With nuclei, significantly less propenal is formed, although the yield of free base is equivalent to that from purified DNA. The membrane peroxidation products from nuclei are the same as those obtained from microsomal membranes treated with activated bleomycin. Superoxide dismutase inhibits the membrane peroxidation but has no effect on the DNA breakage reactions. The results implicate a role for iron in mediating the in vivo action of bleomycin and also reveal a potentially toxic effect, membrane peroxidation, separate from DNA damage.  相似文献   

20.
Upon gentle lysis of exponentially growing mouse carcinoma cells FM3A by sodium dodecyl sulfate, DNA was released as a "DNA-protein complex" in a folded conformation. No histones could be detected in the DNA-protein complex. The proteins bound to DNA were found to be composed of several kinds of nonhistone proteins with a molecular weight range of 50,000 to 60,000; they appear to play a key role in stabilizing and maintaining the compact and folded structure of the complex. Removal of the proteins by Pronase or 2-mercaptoethanol produced a more relaxed structure sedimenting about half as fast as the original complex in a neutral sucrose gradient. DNA in the folded complex is supercoiled, as indicated by the characteristic biphasic response of its sedimentation rate to increasing concentration of various intercalating agents, actinomycin D, ethidium bromide and acriflavine, with which the cells were treated before lysis. Pronase- or 2-mercaptoethanol-treated relaxed DNA still possessed the characteristic of closed-circular structure as judged from its response to intercalating agents. Nicking with gamma-ray or 4NQO broke these superhelical turns and relaxed the folded complex to slower sedimenting forms equivalent to the relaxed DNA obtained on treatment with Pronase or 2-mercaptoethanol. Viscometric observations of DNA-protein complex were consistent with the above results. A tentative model for the structure of this DNA-protein complex is proposed in which supercoiled DNA is folded into loops by several kinds of nonhistone proteins. Autoradiographic examination of the complex appeared to support this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号