首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Starting from the interaction of galangin (3,5,7-trihydroxyflavone) with a cytosolic nucleotide-binding domain of P-glycoprotein, a series of flavonol derivatives was synthesized and tested for their binding affinity towards the same target. The 5,7-dihydroxy-4'-iodoflavonol and 5,7-dihydroxy-4'-n-octylflavonol derivatives displayed much higher binding affinities, with respective increases of 6- and 93-fold as compared to galangin.  相似文献   

2.
Qu Q  Russell PL  Sharom FJ 《Biochemistry》2003,42(4):1170-1177
Drug transport mediated by P-glycoprotein (Pgp) is driven by hydrolysis of ATP at the two cytosolic nucleotide binding domains. However, little is currently known concerning the stoichiometry of nucleotide binding and how both stoichiometry and binding affinity change during the catalytic cycle of the transporter. To address this issue, we used fluorescence techniques to measure both the number of nucleotides bound to P-glycoprotein during various stages of the catalytic cycle and the affinity of nucleotide binding. Results showed that resting state P-glycoprotein bound two molecules of the fluorescent nucleotide derivative, 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP), whereas the vanadate-trapped transition state bound only one nucleotide molecule. Both resting and transition state P-glycoprotein showed similar affinity for TNP-ATP/TNP-ADP and unlabeled ATP/ADP. Following binding of various drugs, resting state P-glycoprotein displayed a higher affinity for nucleotides, up to 4-fold depending on the compound used. In contrast, the transition state showed substantially lower (up to 3-fold) nucleotide binding affinity when the drug binding site(s) is/are occupied. These results indicate that both nucleotide binding domains of P-glycoprotein are likely to be occupied with either ATP (or ADP) in the resting state and the transition state in the absence of transport substrates. Drugs alter the binding affinity to favor association of ATP with P-glycoprotein at the start of the catalytic cycle and release of ADP from the transition state following nucleotide hydrolysis.  相似文献   

3.
Y Romsicki  F J Sharom 《Biochemistry》1999,38(21):6887-6896
The P-glycoprotein multidrug transporter functions as an ATP-driven efflux pump for a large number of structurally unrelated hydrophobic compounds. Substrates are believed to gain access to the transporter after partitioning into the membrane, rather than from the extracellular aqueous phase. The binding of drug substrates to P-glycoprotein may thus be modulated by the properties of the lipid bilayer. The interactions with P-glycoprotein of two drugs (vinblastine and daunorubicin) and a chemosensitizer (verapamil) were characterized by quenching of purified fluorescently labeled protein in the presence of various phospholipids. Biphasic quench curves were observed for vinblastine and verapamil, suggesting that more than one molecule of these compounds may bind to the transporter simultaneously. All three drugs bound to P-glycoprotein with substantially higher affinity in egg phosphatidylcholine (PC), compared to brain phosphatidylserine (PS) and egg phosphatidylethanolamine (PE). The nature of the lipid acyl chains also modulated binding, with affinity decreasing in the order egg PC > dimyristoyl-PC (DMPC) > dipalmitoyl-PC (DPPC). Following reconstitution of the transporter into DMPC, all three compounds bound to P-glycoprotein with 2-4-fold higher affinity in gel phase lipid relative to liquid-crystalline phase lipid. The P-glycoprotein ATPase stimulation/inhibition profiles for the drugs were also altered in different lipids, in a manner consistent with the observed changes in binding affinity. The ability of the drugs to partition into bilayers of phosphatidylcholines was determined. All of the drugs partitioned much better into egg PC relative to DMPC and DPPC. The binding affinity increased (i.e., the value of Kd decreased) as the drug-lipid partition coefficient increased, supporting the proposal that the effective concentration of the drug substrate in the membrane is important for interaction with the transporter. These results provide support for the vacuum cleaner model of P-glycoprotein action.  相似文献   

4.
Aänismaa P  Seelig A 《Biochemistry》2007,46(11):3394-3404
P-glycoprotein (MDR1, ABCB1) is an ATP-dependent efflux transporter of a large variety of compounds. To understand P-glycoprotein in more detail, it is important to elucidate its activity in the cellular ensemble as well as in plasma membrane vesicles (under conditions where other ATP dependent proteins are blocked). We measured P-glycoprotein activity in inside-out vesicles formed from plasma membranes of MDR1-transfected mouse embryo fibroblasts (NIH-MDR1-G185) for comparison with previous measurements of P-glycoprotein activity in living NIH-MDR1-G185 cells. In plasma membrane vesicles activity was measured by monitoring phosphate release upon ATP hydrolysis and in living cells by monitoring the extracellular acidification rate upon ATP synthesis via glycolysis. P-glycoprotein was stimulated as a function of the concentration with 19 structurally different drugs, including local anesthetics, cyclic peptides, and cytotoxic drugs. The concentrations of half-maximum P-glycoprotein activation, K1, were identical in inside-out plasma membrane vesicles and in living cells and covered a broad range of concentrations (K1 approximately (10(-8)-10(-3)) M). The influence of the pH, drug association, and vesicle aggregation on the concentration of half-maximum P-glycoprotein activation was investigated. The turnover numbers in plasma membrane vesicles and in living cells were also approximately identical if the latter were measured in the presence of pyruvate. However, in the absence of pyruvate they were higher in living cells. The rate of ATP hydrolysis/ATP synthesis decreased exponentially with decreasing free energy of drug binding from water to the transporter, DeltaG0(tw)(1) (or increasing binding affinity). This suggests that drug release from the transmembrane domains has to occur before ATP is hydrolyzed for resetting the transporter.  相似文献   

5.
High affinity antibodies to cobrotoxin were obtained by immunization with derivatives of glutaraldehyde (GA)-modified cobrotoxin. The derivatives completely lost lethality and binding activity to nicotinic acetylcholine receptors (nAChR), but retained the same antigenicity as cobrotoxin toward anti-cobrotoxin antibody. Owing to hyperimmunization with these low toxicity derivatives, a high affinity antibody to cobrotoxin was induced in a short period. We also showed that the derivatives of cobrotoxin may have altered local conformation, and residues which contribute to the intensity of binding between antigen and antibody may consequently be exposed. Hence, the modified derivatives have increased binding affinity to anti-cobrotoxin antibody. In addition, since high affinity antibodies prepared using the derivatives exhibit more potent binding affinity to cobrotoxin than conventional anti-cobrotoxin antibody, the specific neutralizing capacity of the high affinity antibodies is greatly increased. These results lead to the conclusion that the derivatives of GA-modified cobrotoxin have the same antigenicity as the native toxin, and can be used as immunogens for the production of high affinity antibodies to cobrotoxin.  相似文献   

6.
Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand–protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd = 4.4 μM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.  相似文献   

7.
Qu Q  Chu JW  Sharom FJ 《Biochemistry》2003,42(5):1345-1353
The P-glycoprotein multidrug transporter is a plasma membrane efflux pump for hydrophobic natural products, drugs, and peptides, driven by ATP hydrolysis. Determination of the details of the catalytic cycle of P-glycoprotein is critical if we are to understand the mechanism of drug transport and design ways to inhibit it. It has been proposed that the vanadate-trapped transition state of P-glycoprotein (Pgp x ADP x V(i) x M(2+), where M(2+) is a divalent metal ion) has a very low affinity for drugs compared to resting state protein, thus leading to binding of substrate on the cytoplasmic side of the membrane and release of substrate to the extracellular medium (or the extracellular membrane leaflet). We have used several different fluorescence spectroscopic approaches to show that isolated purified P-glycoprotein, when trapped in a stable transition state with vanadate and either Co(2+)or Mg(2+), binds drugs with high affinity. For vinblastine, colchicine, rhodamine 123, and doxorubicin, the affinity of the vanadate-trapped transition state for drugs was only very slightly (less than 2-fold) lower than the binding affinity of resting state Pgp, whereas for the modulators cyclosporin A and verapamil and the substrate Hoechst 33342, the binding affinity was very similar for the two states. The drug binding affinity of the ADP-bound form of the transporter was also comparable to that of the unoccupied transporter. These results suggest that release of drug from the transporter during the catalytic cycle precedes formation of the transition state.  相似文献   

8.
A series of tetrahydroisoquinoline-N-phenylamide derivatives were designed, synthesized, and tested for their relative binding affinity and antagonistic activity against androgen receptor (AR). Compound 1b (relative binding affinity, RBA = 6.4) and 1h (RBA = 12.6) showed higher binding affinity than flutamide (RBA = 1), a potent AR antagonist. These two compounds also exerted optimal antagonistic activity against AR in reporter assays. The derivatives were also tested for their activities against another nuclear receptor, farnesoid x receptor (FXR), with most compounds acting as weak antagonists, however, compound 1h behaved as a FXR agonist with activity slightly less than that of chenodeoxycholic acid (CDCA), a natural FXR agonist.  相似文献   

9.
In our effort to delineate novel pharmacophoric configuration of bioisosteric pyran versions of cis-(6-benzhydryl-piperidin-3-yl)-benzylamine derivatives in interacting with the monoamine transporter, further structure-activity relationship study was carried out. Both cis and trans 2,4- and 3,6-disubstituted derivatives were synthesized to determine the positional importance of N-substitution on affinity for monoamine transporters, that is the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET) in rat brain. For that purpose, the potency of compounds was determined in competing for the binding of [(3)H]WIN 35,428, [(3)H]citalopram, and [(3)H]nisoxetine, respectively. Selected compounds were also evaluated for their activity in inhibiting the uptake of [(3)H]DA by DAT. Our binding results demonstrated potency in 3,6-disubstituted derivatives while 2,4-disubstituted derivatives failed to exhibit any appreciable binding affinity. Further structural exploration of the exocyclic N-atom in 3,6-disubstituted derivatives produced compounds potent at both DAT and NET. Compounds 16h and 16o with hydroxyl and amino groups in the phenyl moiety of the benzyl group produced the highest activity for the NET. In this regard, compound 16e with a methoxy substituent produced weak affinity at NET, which upon conversion into a hydroxyl functionality as in 16h produced potent affinity for the NET. Various indole derivatives displayed different interactions; the 5-substituted indole derivative 16n exerted potent affinity for NET, confirming the bioisosteric equivalence between this indole moiety and the phenyl-4-hydroxy group in 16h.  相似文献   

10.
P-glycoprotein (P-gp) is one of the cell membrane pumps which mediate the efflux of molecules such as anticancer drugs to the extracellular matrix of tumor cells. P_gp is a member of the ATP-binding cassette (ABC) transporter family that is implicated in cancer multidrug resistance (MDR). Since MDR is a contributor to cancer chemotherapy failure, modulation of efflux pumps is a viable therapeutic strategy. In this study, new synthetic 1,4 dihydropiridine (DHP) derivatives containing thiophenyl substitution were tested as inhibitors of P-gp. Efflux assay was conducted to evaluate the intracellular accumulation of Rhodamine123 (Rh123) as a pump substrate. MTT assay, cell cycle analysis and in silico methods were also examined. Flow cytometric analysis revealed that synthetic DHP derivatives (15 µM) increased intracellular concentration of the substrate by 2–3 folds compared with verapamil as a standard P-gp inhibitor. MTT assay on EPG85-257P and its drug-resistant EPG85-257RDB cell line revealed antitumor effects (30–45%) for new DHP derivatives at 15 µM following 72 h incubation. However, MTT test on normal cell line showed negligible toxic effects. Finally combination of synthetic derivatives with doxorubicin showed that these compounds decrease IC50 of doxorubicin in resistant cell lines from 9 to 1.5 µM. Sub-G1 peak-related apoptotic cells showed a stronger effect of synthetic compounds at 5 µM compared with verapamil. Molecular dynamic results showed a high binding affinity between DHP derivative and protein at drug binding site. Findings of these biological tests indicated the antitumor activity and P-gp inhibitory effects of new 1,4-DHP derivatives.  相似文献   

11.
Ligand-dependent changes in accessibility of purified P-glycoprotein, functionally reconstituted in liposomes, were investigated by fluorescence measurements. Trp quenching experiments provided evidence that P-glycoprotein adopts different tertiary structures upon binding of drug substrates in the absence and presence of MgATP and its nonhydrolyzable analog, MgATPgammaS. Five anthracycline derivatives were tested as drug substrates: daunorubicin, 4'-epi-doxorubicin, iododoxorubicin, 4-demethoxy-daunorubicin, and methoxy-morpholino-doxorubicin. Among them, daunorubicin and 4'-epi-doxorubicin have been shown to be rejected outside the multidrug-resistant cells, whereas the three others have been shown to accumulate in multidrug-resistant cells overexpressing P-glycoprotein and therefore retain their cytotoxic activity. A small conformational change was associated with nucleotide binding and amplified after nucleotide hydrolysis. Different conformational states were adopted by P-glycoprotein upon the addition of the anthracycline derivatives in the absence and presence of MgATP or MgATPgammaS. These conformational changes are shown to be related to the nature of the antitumor agents and more precisely to their capacity to accumulate in resistant cells. These data also suggest that the cytotoxicity of iododoxorubicin and 4-demethoxy-daunorubicin is related to the fact they are not transported by P-glycoprotein. On the contrary, methoxy-morpholino-doxorubicin cytotoxicity may be explained in terms of its rapid reincorporation into the plasma membrane after being transported by P-glycoprotein.  相似文献   

12.
We have earlier reported that overexpression of the gene encoding human hyaluronan-binding protein (HABP1) is functionally active, as it binds specifically with hyaluronan (HA). In this communication, we confirm the collapse of the filamentous and branched structure of HA by interaction with increasing concentrations of recombinant-HABP1 (rHABP1). HA is the reported ligand of rHABP1. Here, we show the affinity of rHABP1 towards D-mannosylated albumin (DMA) by overlay assay and purification using a DMA affinity column. Our data suggests that DMA is another ligand for HABP1. Furthermore, we have observed that DMA inhibits the binding of HA in a concentration-dependent manner, suggesting its multiligand affinity amongst carbohydrates. rHABP1 shows differential affinity towards HA and DMA which depends on pH and ionic strength. These data suggest that affinity of rHABP1 towards different ligands is regulated by the microenvironment.  相似文献   

13.
We assessed the interaction of three electrically neutral detergents (Triton X-100, C12EO8, and Tween 80) with P-glycoprotein (ABCB1, MDR1) and identified the molecular elements responsible for this interaction. To this purpose we titrated P-glycoprotein in inside-out plasma membrane vesicles of MDR1-transfected mouse embryo fibroblasts (NIH-MDR1-G185) with the detergents below their critical micelle concentration, CMC. The P-glycoprotein ATPase measured as a function of the detergent concentration yielded bell-shaped activity curves which were evaluated with a two-site binding model. The lipid-water partition coefficient and the transporter-water binding constant of the detergents were measured independently. Knowledge of these two parameters allowed assessment of the free energy of detergent binding to P-glycoprotein in the lipid membrane, ΔGtl0, that reflects the direct detergent-transporter affinity. It increased as the number of ethoxyl groups increased, suggesting that these hydrogen bond acceptor groups are the key elements for the detergent-transporter interaction in the lipid membrane. The free energy of binding to P-glycoprotein per ethoxyl group (EO) was determined as approximately ΔGEO0 = − 1.6 kJ/mol. The present findings moreover document that, depending on the concentration applied, detergents are intrinsic substrates for, or inhibitors of P-glycoprotein.  相似文献   

14.
Naltrexone (1), which is a member of the group of competitive opioid antagonists, shows a strong affinity for mu-receptors and its derivatives have been notable as novel receptor antagonists. In this paper, the preparation of several naltrexone derivatives is described; these were used to investigate the role of the oxygenated functional groups in facilitating binding to a series of the opioid receptors. The derivatives showed affinity for opioid mu-receptors which was similar to that of naltrexone, but these compounds, which had masked hydroxyl functional groups, displayed a moderate activity. These results suggest that every oxygenated functional group in naltrexone (1) plays an important role in binding to the opioid receptor.  相似文献   

15.
Plasma membrane P-glycoprotein is a member of the ATP-binding cassette family of membrane transporters. In the present study tryptophan intrinsic fluorescence was used to understand the P-glycoprotein response to three benzodiazepines (bromazepam, chlordiazepoxide and flurazepam) in the presence and absence of ATP. Fluorescence emission spectra showed a red shift on the maximal emission wavelength upon interaction of P-glycoprotein with all benzodiazepines. Benzodiazepine association with nucleotide-bound P-glycoprotein also showed this trend and the quenching profile was attributed to a sphere-of-action model, for static fluorescence. Furthermore, quenching data of benzodiazepine-bound P-glycoprotein with ATP were concentration dependent and saturable, indicating that nucleotide binds to P-glycoprotein whether drug is present or not. These results seems in agreement with the proposal of the ATP-switch model by Higgins and Linton, where substrate binding to the transporters initiates the transport cycle by increasing the ATP binding affinity.  相似文献   

16.
A series of substituted pyrazolines were synthesized and evaluated for their anticancer activity and for their ability to inhibit P-glycoprotein-mediated multidrug resistance by direct binding to a purified protein domain containing an ATP-binding site and a modulator interacting region. Compounds 2a and e have been found to bind to P-glycoprotein with greater affinity.  相似文献   

17.
A series of trans-3-oxospiro[(aza)isobenzofuran-1(3H),1′-cyclohexane]-4′-carboxamide derivatives were synthesized and profiled for NPY Y5 binding affinity, brain and CSF penetrability in rats, and susceptibility to human and mouse P-glycoprotein transporters in order to develop a PET ligand. Compound 12b exhibited an acceptable profile for a PET ligand, and [11C]12b was successfully utilized in clinical settings as a Y5 PET ligand.  相似文献   

18.
We studied the effects of four commonly used insecticides (methylparathion, endosulfan, cypermethrin and fenvalerate) on P-glycoprotein isolated from multidrug-resistant cells. All the pesticides stimulated P-glycoprotein ATPase activity, with maximum stimulation of up to 213% in a detergent-solubilized preparation, and up to 227% in reconstituted liposomes. The ATPase stimulation profiles were biphasic, displaying lower stimulation, and in the case of methylparathion, inhibition of activity, at higher insecticide concentrations. Quenching of the intrinsic Trp fluorescence of purified P-glycoprotein was used to quantitate insecticide binding; the estimated K(d) values fell in the range 4-6 microM. Transport of the fluorescent substrate tetramethylrosamine (TMR) into proteoliposomes containing P-glycoprotein was monitored in real time. The TMR concentration gradient generated by the transporter was collapsed by the addition of insecticides, and prior addition of these compounds prevented its formation. The rate of TMR transport was inhibited in a saturable fashion by all the compounds, indicating that they compete with the substrate for membrane translocation. Taken together, these data suggest that the insecticides bind to Pgp with high affinity and effectively block drug transport. Inhibition of Pgp by pesticides may compromise its ability to clear xenobiotics from the body, leading to a higher risk of toxicity.  相似文献   

19.
Src homology-2 (SH2) domains are noncatalytic motifs containing approximately 100 amino acid residues that are involved in intracellular signal transduction. The phosphotyrosine-containing tetrapeptide pTyr-Glu-Glu-Ile (pYEEI) binds to Src SH2 domain with high affinity (K(d)=100 nM). The development of five classes of tetrapeptides as inhibitors for the Src SH2 domain is described. Peptides were prepared via solid-phase peptide synthesis and tested for affinity to Src SH2 domain using a fluorescence polarization based assay. All of the N-terminal substituted pYEEI derivatives (class II) presented binding affinity (IC(50)=of 2.7-8.6 microM) comparable to pYEEI (IC(50)=6.5 microM) in this assay. C-Terminal substituted pYEEI derivatives (class III) showed a lower binding affinity with IC(50) values of 34-41 microM. Amino-substituted phenylalanine derivatives (class IV) showed weak binding affinities (IC(50)=16-153 microM). Other substitutions on phenyl ring (class I) or the replacement of the phenyl ring with other cyclic groups (class V) dramatically decreased the binding of tetrapeptides to Src SH2 (IC(50)>100 microM). The ability of pYEEI and several of the tetrapeptides to inhibit the growth of cancer cells were assessed in a cell-based proliferation assay in human embryonic kidney (HEK) 293 tumor cells. The binding affinity of several of tested compounds against Src SH2 domain correlates with antiproliferative activity in 293T cells. None of the compounds showed any significant antifungal activity against Candida albicans ATCC 14053 at the maximum tested concentration of 10 microM. Overall, these results provided the structure-activity relationships for some FEEI and YEEI derivatives designed as Src SH2 domain inhibitors.  相似文献   

20.
A series of imidacloprid (IMI) derivatives with an alkylated imidazolidine ring were asymmetrically synthesized to evaluate their insecticidal activity against adult female housefly, Musca domestica, and affinity to the nicotinic acetylcholine receptor of the flies. The bulkier the alkyl group, the lower was the receptor affinity, but the derivatives methylated and ethylated at the R-5-position of the imidazolidine ring were equipotent to the unsubstituted compound. Quantitative structure–activity relationship (QSAR) analysis of the receptor affinity demonstrated that the introduction of a substituent into the imidazolidine ring was fundamentally disadvantageous, but the introduction of a substituent at the R-5-position was permissible in the case of its small size. The binding model of the synthesized derivatives with the receptor supported the QSAR analysis, indicating the existence of space for a short alkyl group around the R-5-position in the ligand-binding site. In addition, positive correlation was observed between the insecticidal activity and receptor affinity, suggesting that the receptor affinity was the primary factor in influencing the insecticidal activity even if the imidazolidine ring was modified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号