首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The introduction of 3-arylmethyl, 3-aryloxy and 3-arylthio moieties into a 6-methylsulfonylindole framework using rational drug design led to potent, selective COX-2 inhibitors having efficacy in a rat carrageenan air pouch model. Incorporation of a conformationally more rigid 3-aroyloxy substituent onto the 6-methylsulfonylindole scaffold led to selective, but considerably less potent COX-2 inhibitors. Variation of the hydrophilicity and size of the indole 2-substituent of 3-arylthio-6-methylsulfonylindole inhibitors led to modulation of the COX-2 human whole blood (HWB) potency and selectivity.  相似文献   

2.
The role of cyclooxygenase (COX)-1 and -2 in prostanoid formation and modulation of pressor responses to ANG II was investigated in the pulmonary and systemic vascular beds in the rat. In the present study, selective COX-1 and -2 inhibitors attenuated increases in pulmonary arterial pressure and decreases in systemic arterial pressure in response to arachidonic acid but did not alter responses to PGE1 or U-46619. The selective COX-1 and -2 inhibitors did not modify systemic pressor responses to injections or infusions of ANG II or pulmonary pressor responses to injections of the peptide. COX-2 inhibitors did not alter, whereas a COX-1 inhibitor depressed, arachidonic acid-induced platelet aggregation. These data provide evidence in support of the hypothesis that prostanoid synthesis occurs by way of the COX-1 and -2 pathways in the pulmonary and systemic vascular beds but that pressor responses to ANG II are not mediated or modulated by these pathways in the rat.  相似文献   

3.
Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.  相似文献   

4.
A new type of 1-aryl-5-(4-methylsulfonylphenyl)imidazoles, possessing C-2 alkylthio (SMe or SEt) substituents, were designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 1-(4-bromophenyl)-5-(4-methylsulfonylphenyl)-2-methylthioimidazole (11g), was the most potent and selective COX-2 inhibitor (COX-2 IC50=0.43 microM with no inhibition of COX-1 up to 25 microM) relative to the reference drug celecoxib (COX-2 IC50=0.21 microM with no inhibition of COX-1 up to 25 microM) and also showed very good anti-inflammatory activity compared to celecoxib in carrageenan-induced rat paw edema assay.  相似文献   

5.
Role of cyclooxygenase-2 in gastric mucosal defense.   总被引:5,自引:0,他引:5  
Two isoenzymes of cyclooxygenase (COX), the key enzyme in prostaglandin (PG) biosynthesis, COX-1 and COX-2, have been identified. COX-1 was proposed to regulate physiological functions, COX-2 to mediate pathophysiological reactions such as inflammation. In particular, it was suggested that maintenance of gastric mucosal integrity relies exclusively on COX-1. Recently, it was shown that a selective COX-1 inhibitor does not damage the mucosa in the healthy rat stomach, although mucosal prostaglandin formation is near-maximally suppressed. However, concurrent treatment with a COX-1 and a COX-2 inhibitor induces severe gastric damage. This indicates that in normal mucosa both COX-1 and COX-2 have to be inhibited to evoke ulcerogenic effects. In the acid-challenged rat stomach inhibition of COX-1 alone is associated with dose-dependent injury which is aggravated by additional inhibition of COX-2 activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. After acid exposure, COX-2 inhibitors cause substantial gastric injury when nitric oxide formation is suppressed or afferent nerves are defunctionalized. Ischemia-reperfusion of the gastric artery increases levels of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone aggravate ischemia-reperfusion-induced mucosal damage up to 4-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE2. Furthermore, the protective effects elicited by a mild irritant or intragastric peptone perfusion are antagonized by COX-2 inhibitors. Finally, COX-2 expression is increased in experimental ulcers. COX-2 inhibitors delay the healing of chronic gastric ulcers in experimental animals and decrease epithelial cell proliferation, angiogenesis and maturation of the granulation tissue to the same extent as non-steroidal anti-inflammatory drugs. These observations indicate that, in contrast to the initial concept, COX-2 plays an important role in gastric mucosal defense.  相似文献   

6.
Role of cyclooxygenase isoforms in gastric mucosal defence.   总被引:7,自引:0,他引:7  
A complex system of interacting mediators exists in the gastric mucosa to strengthen its resistance against injury. In this system prostaglandins play an important role. Prostaglandin biosynthesis is catalysed by the enzyme cyclooxygenase (COX), which exists in two isoforms, COX-1 and COX-2. Initially the concept was developed that COX-1 functions as housekeeping enzyme, whereas COX-2 yields prostaglandins involved in pathophysiological reactions such as inflammation. In the gastrointestinal tract, the maintenance of mucosal integrity was attributed exclusively to COX-1 without a contribution of COX-2 and ulcerogenic effects of non-steroidal anti-inflammatory drugs (NSAIDs) were believed to be the consequence of inhibition of COX-1. Recent findings, however, indicate that both COX-1 and COX-2 either alone or in concert contribute to gastric mucosal defence. Thus, in normal rat gastric mucosa specific inhibition of COX-1 does not elicit mucosal lesions despite near-maximal suppression of gastric prostaglandin formation. When a selective COX-2 inhibitor which is not ulcerogenic when given alone is added to the COX-1 inhibitor, severe gastric damage develops. In contrast to normal gastric mucosa which requires simultaneous inhibition of COX-1 and COX-2 for breakdown of mucosal resistance, in the acid-challenged rat stomach inhibition of COX-1 alone results in dose-dependent injury which is further increased by additional inhibition of COX-2 enzyme activity or prevention of acid-induced up-regulation of COX-2 expression by dexamethasone. COX-2 inhibitors do not damage the normal or acid-challenged gastric mucosa when given alone. However, when nitric oxide formation is suppressed or afferent nerves are defunctionalized, specific inhibition of COX-2 induces severe gastric damage. Ischemia-reperfusion of the gastric artery is associated with up-regulation of COX-2 but not COX-1 mRNA. COX-2 inhibitors or dexamethasone augment ischemia-reperfusion-induced gastric damage up to four-fold, an effect abolished by concurrent administration of 16,16-dimethyl-PGE(2). Selective inhibition of COX-1 is less effective. Furthermore, COX-2 inhibitors antagonize the protective effect of a mild irritant or intragastric peptone perfusion in the rat stomach, whereas the protection induced by chronic administration of endotoxin is mediated by COX-1. Finally, an important function of COX-2 is the acceleration of ulcer healing. COX-2 is up-regulated in chronic gastric ulcers and inhibitors of COX-2 impair the healing of ulcers to the same extent as non-selective NSAIDs. Taken together, these observations show that both COX isoenzymes are essential factors in mucosal defence with specific contributions in various physiological and pathophysiological situations.  相似文献   

7.
Two series of 4-benzylideneamino- and 4-phenyliminomethyl-benzenesulfonamide derivatives were designed and synthesized for the evaluation as selective cyclooxygenase-2 (COX-2) inhibitors in a cellular assay using human whole blood (HWB). Extensive structure-activity relationships (SAR) were studied within these series. Several compounds were found to be novel and selective COX-2 inhibitors. Among them, the most potent and selective was 4-(3-carboxy-4-hydroxy-benzylideneamino)benzenesulfonamide (20, LA2135), (IC(50)'s for COX-1: 85.13 microM; COX-2: 0.74 microM; SI: 114.5), being more active COX-2 selective than celecoxib.  相似文献   

8.
9.
COX-2 and iNOS in opioid-induced delayed cardioprotection in the intact rat   总被引:10,自引:0,他引:10  
Patel HH  Hsu AK  Gross GJ 《Life sciences》2004,75(2):129-140
Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) have been previously implicated in the late phase of cardioprotection associated with opioid-induced and ischemic preconditioning (IPC) in conscious rabbits and COX-2 in isolated rat hearts pretreated with an exogenous delta opioid agonist. However, it is not know if both iNOS and COX-2 mediate the late phase of cardioprotection induced by opioids in the intact blood-perfused rat. Therefore, we investigated the role of COX-2 and iNOS in the delayed phase of protection mediated by delta opioid receptor activation. Rats were pretreated 24 hours prior to an occlusion/reperfusion protocol with the selective non-peptide delta opioid agonists, BW373U86 (BW) and SNC-121 (SNC). NS-398, a selective COX-2 inhibitor was administered after the 24-hour recovery period just prior to index ischemia. The selective iNOS inhibitors, S-methylthiourea (SMT) and aminoguanidine (AG), were administered in conjunction with opioid pretreatment or were also given 24 hours after opioid administration just prior to index ischemia. COX-2 inhibition by NS-398 given 24 hours after opioid administration attenuated the protective effects of both BW and SNC (46 +/- 6 vs. 13 +/- 3 and 51 +/- 5 vs. 29 +/- 2, p < 0.001, respectively). Similarly, inhibition of iNOS following 24 hours of treatment with opioids also attenuated the protective effects of BW and SNC. However, the delayed protective effects of the opioids were not attenuated by pretreatment with the iNOS inhibitors 24 hours prior to the infarct protocol. These results suggest that both COX-2 and iNOS are mediators of delayed protection induced by non-peptide delta opioid agonists. It appears that the trigger effect is not dependent on the activity of iNOS or COX-2 but the late phase of cardioprotection is dependent on the upregulation of these enzymes.  相似文献   

10.
A group of N-acetyl-2-(or 3-)carboxymethylbenzenesulfonamides, possessing either a F or a substituted-phenyl ring substituent (4-F, 2,4-F2, 4-SO2Me, 4-OCHMe2) attached to its C-4 or C-6 position, was prepared using a palladium-catalyzed Suzuki cross-coupling reaction for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. Although N-acetyl-3-carboxymethyl-6-fluorobenzenesulfonamide [14, COX-1 IC50 = 2.26 microM; COX-2 IC50 = 0.012 microM; COX-2 selectivity index (SI) = 188] and N-acetyl-3-carboxymethyl-6-(4-isopropoxyphenyl)benzenesulfonamide (20c, COX-1 IC50 >100 microM; COX-2 IC50 = 0.15 microM; COX-2 SI >667) exhibited potent in vitro COX-2 inhibitory activity and high COX-2 selectivity, both compounds were inactive anti-inflammatory agents in a carrageenan-induced rat paw edema assay. In contrast, the less potent and less selective COX-2 inhibitors N-acetyl-2-carboxymethyl-4-fluorobenzenesulfonamide (12, COX-1 IC50 = 4.25 microM; COX-2 IC50 = 0.978 microM; COX-2 SI = 4.3), N-acetyl-2-carboxymethyl-4-(2,4-difluorophenyl)benzenesulfonamide (17c, COX-1 IC50 = 1.02 microM; COX-2 IC50 = 1.00 microM; COX-2 SI = 1.02), and N-acetyl-3-carboxymethyl-6-(4-methanesulfonylphenyl)benzenesulfonamide (20e, COX-1 IC50 = 0.109 microM; COX-2 IC50 = 1.14 microM; COX-2 SI = 0.095) exhibited moderate anti-inflammatory activity where a 75 mg/kg oral dose reduced inflammation 26%, 14%, and 20%, respectively, at 3 h postdrug administration relative to the reference drug aspirin where a 50 mg/kg oral dose reduced inflammation by 25% at 3 h postdrug administration.  相似文献   

11.
A series of phenylazobenzenesulfonamide derivatives were designed and synthesized for the evaluation as selective cyclooxygenase-2 (COX-2) inhibitors in a cellular assay using human whole blood (HWB) and an enzymatic assay using purified ovine enzymes. Extensive structure-activity relationships (SAR) were studied within this series, and several of selective COX-2 inhibitors have been identified. Among them, compound 8, 4-(4-amino-2-methylsulfanyl-phenylazo)benzenesulfonamide, showed a potent inhibitory activity to the cyclooxygenase enzymes (IC(50)'s for COX-1: 23.28 microM; COX-2: 2.04 microM), being active but less COX-2 selective than celecoxib.  相似文献   

12.
Previous studies from our laboratory have revealed that esterification/amidation of the carboxylic acid moiety in the nonsteroidal anti-inflammatory drug, indomethacin, generates potent and selective COX-2 inhibitors. In the present study, a series of reverse ester/amide derivatives were synthesized and evaluated as selective COX-2 inhibitors. Most of the reverse esters/amides displayed time-dependent COX-2 inhibition with IC50 values in the low nanomolar range. Replacement of the 4-chlorobenzoyl group on the indole nitrogen with a 4-bromobenzyl moiety resulted in compounds that retained selective COX-2 inhibitory potency. In addition to inhibiting COX-2 activity in vitro, the reverse esters/amides also inhibited COX-2 activity in the mouse macrophage-like cell line, RAW264.7. Overall, this strategy broadens the scope of our previous methodology of neutralizing the carboxylic acid group in NSAIDs as a means of generating COX-2-selective inhibitors and is potentially applicable to other NSAIDs.  相似文献   

13.
We investigated the regulation of cyclooxygenase-2 (COX-2) by 17-beta-estradiol (E2) in the rat oviduct. We observed that COX-2 is expressed mainly in proestrous and estrous stages, periods under estrogenic influence. While exogenous administration of E2 (1 microg/rat) significantly increased COX-2 protein levels, progesterone did not modify it. COX-2 was mainly localized on oviductal epithelial cells from estrogenized rat. Induction of COX-2 expression by E2 was partially reverted by tamoxifen (1 mg/rat), an E2 receptor antagonist. Estradiol treatment also increased prostaglandins (PGs) synthesis: 6-keto-PGF(1alpha) (40%), a stable metabolite of prostacyclin (PGI2), PGF(2alpha) (40%) and PGE2 (50%). Tamoxifen completely suppressed this enhancement. In order to discriminate which isoform of COX was implicated in the stimulatory effect of E2 on PGs synthesis, oviducts were preincubated with meloxicam (Melo: 10(-9)M) or NS-398 (10(-7)M), two selective COX-2 inhibitors. Both Melo and NS-398 abolished the increase of PGs synthesis stimulated by E2. All together, these data indicate that E2 could upregulate COX-2 expression and activity in the rat oviduct and that the stimulatory effect of E2 may be receptor-mediated.  相似文献   

14.
New pyrazole and pyrazoline derivatives have been synthesized and their ability to inhibit ovine COX-1/COX-2 isozymes was evaluated using in vitro cyclooxygenase (COX) inhibition assay. Among the tested compounds, N-((5-(4-chlorophenyl)-1-phenyl-3-(trifluoromethyl)-1H-pyrazol-4-yl)methylene)-3,5-bis(trifluoromethyl)aniline 8d exhibit optimal COX-2 inhibitory potency (IC(50)=0.26 lM) and selectivity (SI)=>192.3] comparable with reference drug celecoxib (IC(50) value of 0.28 lM and selectivity index of 178.57). Moreover, the anti-inflammatory activity of selected compounds, which are the most selective COX-2 inhibitors in the COX inhibition assay, was investigated in vivo using carrageenan-induced rat paw edema model. Molecular modeling was conducted to study the ability of the active compounds to bind into the active site of COX-2 which revealed a similar binding mode to SC-558, a selective COX-2 inhibitor.  相似文献   

15.
Several studies suggest that cyclooxygenase (COX)-2 plays a pivotal role in the progression of ischaemic brain damage. In the present study, we investigated the effects of selective inhibition of COX-2 with nimesulide (12 mg/kg) and selective inhibition of COX-1 with valeryl salicylate (VAS, 12-120 mg/kg) on prostaglandin E(2) (PGE(2)) levels, myeloperoxidase (MPO) activity, Evans blue (EB) extravasation and infarct volume in a standardized model of transient focal cerebral ischaemia in the rat. Post-ischaemic treatment with nimesulide markedly reduced the increase in PGE(2) levels in the ischaemic cerebral cortex 24 h after stroke and diminished infarct size by 48% with respect to vehicle-treated animals after 3 days of reperfusion. Furthermore, nimesulide significantly attenuated the blood-brain barrier (BBB) damage and leukocyte infiltration (as measured by EB leakage and MPO activity, respectively) seen at 48 h after the initial ischaemic episode. These studies provide the first experimental evidence that COX-2 inhibition with nimesulide is able to limit BBB disruption and leukocyte infiltration following transient focal cerebral ischaemia. Neuroprotection afforded by nimesulide is observed even when the treatment is delayed until 6 h after the onset of ischaemia, confirming a wide therapeutic window of COX-2 inhibitors in experimental stroke. On the contrary, selective inhibition of COX-1 with VAS had no significant effect on the evaluated parameters. These data suggest that COX-2 activity, but not COX-1 activity, contributes to the progression of focal ischaemic brain injury, and that the beneficial effects observed with non-selective COX inhibitors are probably associated to COX-2 rather than to COX-1 inhibition.  相似文献   

16.
The purpose of this study was to determine the effect of a selective cyclooxygenase (COX)-2 inhibitor as compared to non-selective COX and lipoxygenase (LOX) inhibitors in rat colon. Basal- and serotonin (5-hydroxytryptamine, 5-HT)-induced electrogenic ion transport (short circuit current, SCC), prostaglandin E2 (PGE2) release and histological characteristics were measured. Muscle-stripped mucosal sheets of the proximal and distal segment of rat colon were investigated by employing the Ussing chamber technique, radioimmunoassays for PGE2 and light microscopy examinations for control of tissue integrity. 5-HT and PGE2 both induced a concentration-dependent increase in SCC by activation of multiple receptors. The response to 5-HT was bumetanide-sensitive. Neither the non-selective COX inhibitor piroxicam, nor the selective COX-2 inhibitor SC-'236, altered basal- SCC or 5-HT-induced SCC. Indomethacin reduced both basal- and 5-HT-induced SCC in both segments. Nordihydroguaiaretic acid reduced the 5-HT-induced increase in SCC, but did not change basal SCC. 5-HT-induced a concentration-dependent release of PGE2. Only high concentrations of piroxicam and indomethacin reduced basal PGE2 release and 5-HT-induced PGE2 release. Histological examination of the specimens demonstrated only minor changes following mounting in chambers. There were no apparent differences in the morphology following treatment with COX or LOX inhibitors. These results suggest that in rat colon only the COX-1 enzyme is expressed under basal conditions. Furthermore, data suggest neither the COX-1 nor the COX-2 enzyme to be of major importance for 5-HT-induced ion transport in rat colon in vitro. In conclusion, this study supports 5-HT as a mediator of chloride secretion by activating several receptor subtypes and the LOX enzyme, releasing mediators such as leucotrienes.  相似文献   

17.
Prostaglandin H Synthase (PGHS) is a bi-functional enzyme with a cyclooxygenase (COX) activity and a functionally linked peroxidase (POX) activity that exists in two isoforms (COX-1, COX-2). Non-steroidal anti-inflammatory drugs (NSAIDs), including the selective COX-2 inhibitors, block COX activity while leaving POX activity unscathed. Recently, some selective COX-2 inhibitors were withdrawn from the market due to elevated cardiovascular risk in placebo-controlled trials. Mice deficient for PGHS2 were developed in 1995 and through numerous subsequent studies have revealed significant roles in renal development, ductus arteriosus patency/closure, skin carcinogenesis and cardiovascular function. In this short review, we compare a novel genetic COX-2 selective inhibition mouse model with the originally described COX-2 null mice in these different physiological functions.  相似文献   

18.
A new type of 4,5-diaryl-4H-1,2,4-triazole, possessing C-3 thio and alkylthio (SH, SMe or SEt) substituents, was designed and synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors with in vivo anti-inflammatory activity. The compound, 3-ethylthio-5-(4-fluorophenyl)-4-(4-methylsulfonylphenyl)-4H-1,2,4-triazole (10d), exhibited a high in vitro selectivity (COX-1 IC50=20.5 nM; COX-2 IC50=1.8 nM; SI=11.39) relative to the reference drug celecoxib (COX-1 IC50=3.7 nM; COX-2 IC50=2.2 nM; SI=1.68) and also showed good anti-inflammatory activity compared to celecoxib in a carrageenan-induced rat paw edema assay.  相似文献   

19.
2-Sulfonylphenyl-3-phenyl-indole derivatives have been reported to be highly potent and selective COX-2 inhibitors previously. In this paper, the regio-isomeric analogues-2-phenyl-3-sulfonylphenyl-indoles were identified as potent and selective COX-2 inhibitors. This work led to the discovery of compounds 4a and 8a possessing higher activity than Celecoxib on cellular assay.  相似文献   

20.
A series of sulfonamide-substituted 4,5-diarylthiazoles was prepared via three synthetic routes as selective COX-2 inhibitors. Recently in the synthesis of selective COX-2 inhibitors we have discovered that the sulfonamide moiety is a suitable replacement for the methylsulfonyl moiety yielding compounds with activity both in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号