首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Effector‐triggered immunity (ETI) to host‐adapted pathogens is associated with rapid cell death at the infection site. The plant‐pathogenic bacterium Xanthomonas euvesicatoria (Xcv) interferes with plant cellular processes by injecting effector proteins into host cells through the type III secretion system. Here, we show that the Xcv effector XopQ suppresses cell death induced by components of the ETI‐associated MAP kinase cascade MAPKKKα MEK2/SIPK and by several R/avr gene pairs. Inactivation of xopQ by insertional mutagenesis revealed that this effector inhibits ETI‐associated cell death induced by avirulent Xcv in resistant pepper (Capsicum annuum), and enhances bacterial growth in resistant pepper and tomato (Solanum lycopersicum). Using protein–protein interaction studies in yeast (Saccharomyces cerevisiae) and in planta, we identified the tomato 14–3–3 isoform SlTFT4 and homologs from other plant species as XopQ interactors. A mutation in the putative 14–3–3 binding site of XopQ impaired interaction of the effector with CaTFT4 in yeast and its virulence function in planta. Consistent with a role in ETI, TFT4 mRNA abundance increased during the incompatible interaction of tomato and pepper with Xcv. Silencing of NbTFT4 in Nicotiana benthamiana significantly reduced cell death induced by MAPKKKα. In addition, silencing of CaTFT4 in pepper delayed the appearance of ETI‐associated cell death and enhanced growth of virulent and avirulent Xcv, demonstrating the requirement of TFT4 for plant immunity to Xcv. Our results suggest that the XopQ virulence function is to suppress ETI and immunity‐associated cell death by interacting with TFT4, which is an important component of ETI and a bona fide target of XopQ.  相似文献   

3.
4.
5.
6.
Osmotin or osmotin-like protein, a PR-5 family member, is differentially induced in plants by abiotic and biotic stresses. Here, we demonstrate that the pepper (Capsicum annuum) osmotin-like protein 1 gene, CaOSM1, was required for the defense and hypersensitive cell death response and oxidative burst signaling during Xanthomonas campestris pv. vesicatoria (Xcv) infection. CaOSM1 protein was localized to the plasma membrane in leaf cells of Nicotiana benthamiana. Agrobacterium-mediated transient expression of CaOSM1 in pepper distinctly induced the hypersensitive cell death response and H2O2 accumulation. Knock-down of CaOSM1 in pepper by virus-induced gene silencing increased the susceptibility to Xcv infection, which was accompanied by attenuation of the cell death response and decreased accumulation of H2O2. CaOSM1 overexpression in transgenic Arabidopsis conferred reduced susceptibility and accelerated cell death response and H2O2 accumulation to infection by Pseudomonas syringe pv. tomato and Hyaloperonospora arabidopsidis. Together, these results suggest that CaOSM1 is involved in cell death and oxidative burst responses during plant defense against microbial pathogens.  相似文献   

7.
Many Gram‐negative plant pathogenic bacteria express effector proteins of the XopQ/HopQ1 family which are translocated into plant cells via the type III secretion system during infection. In Nicotiana benthamiana, recognition of XopQ/HopQ1 proteins induces an effector‐triggered immunity (ETI) reaction which is not associated with strong cell death but renders plants immune against Pseudomonas syringae and Xanthomonas campestris pv. vesicatoria strains. Additionally, XopQ suppresses cell death in N. benthamiana when transiently co‐expressed with cell death inducers. Here, we show that representative XopQ/HopQ1 proteins are recognized similarly, likely by a single resistance protein of the TIR‐NB‐LRR class. Extensive analysis of XopQ derivatives indicates the recognition of structural features. We performed Agrobacterium‐mediated protein expression experiments in wild‐type and EDS1‐deficient (eds1) N. benthamiana leaves, not recognizing XopQ/HopQ1. XopQ recognition limits multiplication of Agrobacterium and attenuates levels of transiently expressed proteins. Remarkably, XopQ fails to suppress cell death reactions induced by different effectors in eds1 plants. We conclude that XopQ‐mediated cell death suppression in N. benthamiana is due to the attenuation of Agrobacterium‐mediated protein expression rather than the cause of the genuine XopQ virulence activity. Thus, our study expands our understanding of XopQ recognition and function, and also challenges the commonly used co‐expression assays for elucidation of in planta effector activities, at least under conditions of ETI induction.  相似文献   

8.
To control defense and cell‐death signaling, plants contain an abundance of pathogen recognition receptors such as leucine‐rich repeat (LRR) proteins. Here we show that pepper (Capsicum annuum) LRR1 interacts with the pepper pathogenesis‐related (PR) protein 4b, PR4b, in yeast and in planta. PR4b is synthesized in the endoplasmic reticulum, interacts with LRR1 in the plasma membrane, and is secreted to the apoplast via the plasma membrane. Binding of PR4b to LRR1 requires the chitin‐binding domain of PR4b. Purified PR4b protein inhibits spore germination and mycelial growth of plant fungal pathogens. Transient expression of PR4b triggers hypersensitive cell death. This cell death is compromised by co‐expression of LRR1 as a negative regulator in Nicotiana benthamiana leaves. LRR1/PR4b silencing in pepper and PR4b over‐expression in Arabidopsis thaliana demonstrated that LRR1 and PR4b are necessary for defense responses to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis (Hpa) infection. The mutant of the PR4b Arabidopsis ortholog, pr4, showed enhanced susceptibility to Hpa infection. Together, our results suggest that PR4b functions as a positive modulator of plant cell death and defense responses. However, the activity of PR4b is suppressed by interaction with LRR1.  相似文献   

9.
Heat shock proteins (HSPs) function as molecular chaperones and are essential for the maintenance and/or restoration of protein homeostasis. The genus Xanthomonas type III effector protein AvrBsT induces hypersensitive cell death in pepper (Capsicum annuum). Here, we report the identification of the pepper CaHSP70a as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirm the specific interaction between CaHSP70a and AvrBsT in planta. The CaHSP70a peptide-binding domain is essential for its interaction with AvrBsT. Heat stress (37°C) and Xanthomonas campestris pv vesicatoria (Xcv) infection distinctly induce CaHSP70a in pepper leaves. Cytoplasmic CaHSP70a proteins significantly accumulate in pepper leaves to induce the hypersensitive cell death response by Xcv (avrBsT) infection. Transient CaHSP70a overexpression induces hypersensitive cell death under heat stress, which is accompanied by strong induction of defense- and cell death-related genes. The CaHSP70a peptide-binding domain and ATPase-binding domain are required to trigger cell death under heat stress. Transient coexpression of CaHSP70a and avrBsT leads to cytoplasmic localization of the CaHSP70a-AvrBsT complex and significantly enhances avrBsT-triggered cell death in Nicotiana benthamiana. CaHSP70a silencing in pepper enhances Xcv growth but disrupts the reactive oxygen species burst and cell death response during Xcv infection. Expression of some defense marker genes is significantly reduced in CaHSP70a-silenced leaves, with lower levels of the defense hormones salicylic acid and jasmonic acid. Together, these results suggest that CaHSP70a interacts with the type III effector AvrBsT and is required for cell death and immunity in plants.The heat shock protein HSP70 is a ubiquitous essential protein chaperone and one of the most abundant and diverse heat stress proteins in plants. HSP70s are induced by environmental stresses and are required for plants to cope with heat. HSP70s are involved in protein folding, synthesis, translocation, and macromolecular assemblies such as microtubules (Mayer et al., 2001; Hartl and Hayer-Hartl, 2002). HSP70s protect cells from heat stress by preventing protein aggregation and by facilitating the refolding of denatured proteins. Protein stability can decrease under heat stress conditions and expose hydrophobic patches that cause the aggregation of denatured proteins. HSP70s bind to hydrophobic patches of partially unfolded proteins in an ATP-dependent manner and prevent protein aggregation (Mayer and Bukau, 2005). The modular HSP70 structure consists of a N-terminal ATPase domain and a C-terminal peptide-binding domain that contains a β-sandwich subdomain with a peptide-binding cleft and an α-helical latch-like segment (Zhu et al., 1996; Hartl and Hayer-Hartl, 2002).HSP70s are involved in microbial pathogenesis, cell death responses, and immune responses. Diverse RNA viruses induce HSP70 expression in Arabidopsis (Arabidopsis thaliana; Whitham et al., 2003). Cytoplasmic HSP70s enhance the infection of Nicotiana benthamiana by Tobacco mosaic virus, Potato virus X, Cucumber mosaic virus, and Watermelon mosaic virus (Chen et al., 2008). Recently, the coat protein of Tomato yellow leaf curl virus was suggested to recruit host plant HSP70 during virus infection (Gorovits et al., 2013). HSP70s appear to be involved in regulating viral reproduction, protein folding, and movement, which ultimately promotes viral infection (Boevink and Oparka, 2005; Hafrén et al., 2010). The Pseudomonas syringae effector protein Hopl1 directly binds and manipulates host HSP70, which promotes bacterial virulence (Jelenska et al., 2010). The cytosolic/nuclear heat shock cognate 70 (HSC70) chaperone, which is highly homologous to HSP70 (Tavaria et al., 1996), regulates Arabidopsis immune responses together with SGT1 (for the suppressor of the G2 allele of S-phase kinase-associated protein1 [skp1]; Noël et al., 2007). Cytoplasmic HSP70 is required for the Phytophthora infestans INF1-mediated hypersensitive response (HR) and nonhost resistance to Pseudomonas cichorii in N. benthamiana (Kanzaki et al., 2003). HSP70 is proposed to be involved in both positive and negative regulation of cell death. Selective HSP70 depletion from human cell lines activates a tumor-specific death program that is independent of known caspases and p53 tumor-suppressor protein (Nylandsted et al., 2000), whereas HSP70 promotes tumor necrosis factor-mediated apoptosis by binding IkB kinase γ and impairing nuclear factor-κB signaling in Cos-1 cells (Ran et al., 2004). In N. benthamiana, HSP70 is required for tabtoxinine-β-lactam-induced cell death (Ito et al., 2014). However, HSP70 expression is shown to decrease the cell death triggered by salicylic acid (SA) in Nicotiana tabacum protoplasts (Cronjé et al., 2004). Overexpression of mitochondrial HSP70 suppresses heat- and hydrogen peroxide (H2O2)-induced programmed cell death in rice (Oryza sativa; Qi et al., 2011).The genus Xanthomonas YopJ-like AvrBsT protein activates effector-triggered immunity (ETI) in Arabidopsis Pitztal 0 plants (Cunnac et al., 2007). AvrBsT is a member of the YopJ/AvrRxv family identified in Xanthomonas campestris pv vesicatoria (Xcv; Lewis et al., 2011). AvrBsT alters phospholipid signaling and activates defense responses in Arabidopsis (Kirik and Mudgett, 2009). AvrBsT is an acetyltransferase that acetylates Arabidopsis ACETYLATED INTERACTING PROTEIN1 (ACIP1), a microtubule-associated protein required for plant immunity (Cheong et al., 2014). Xcv strain Bv5-4a secretes the AvrBsT type III effector protein that induces hypersensitive cell death and strong defense responses in pepper (Capsicum annuum) and N. benthamiana (Orth et al., 2000; Escolar et al., 2001; Kim et al., 2010). AvrBsT-induced HR-like cell death in pepper is likely part of the typical ETI-mediated defense response cascade (Jones and Dangl, 2006; Eitas et al., 2008; Eitas and Dangl, 2010). AvrBsT overexpression in Arabidopsis triggers plant cell death and defense signaling, leading to both disease and defense responses to diverse microbial pathogens (Hwang et al., 2012). Type III effectors such as Hopl1 and AvrBsT are used to identify unknown components of plant defense cascades (Nomura et al., 2006; Block et al., 2008; Jelenska et al., 2010; Kim et al., 2014) that modulate host innate immunity to achieve disease resistance. The pepper SGT1 was identified recently as a host interactor of AvrBsT (Kim et al., 2014). Pepper SGT1 has features of a cochaperone (Shirasu and Schulze-Lefert, 2003), interacts with AvrBsT, and promotes hypersensitive cell death associated with the pepper receptor-like cytoplasmic protein kinase1 (PIK1) phosphorylation cascade.In this study, we used a yeast (Saccharomyces cerevisiae) two-hybrid screen to identify the pepper HSP70a (CaHSP70a) as an interacting partner of the Xanthomonas spp. type III effector AvrBsT. Coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) analyses verify that CaHSP70a interacts with AvrBsT in planta. Transient CaHSP70a overexpression in pepper leaves enhances heat stress sensitivity and leads to a cell death response. Cytoplasmic localization of the AvrBsT-CaHSP70a complex strongly elevates cell death. CaHSP70a expression is rapidly and strongly induced by avrBsT (for avirulent Xcv Dukso1 [Ds1]) infection in pepper. CaHSP70a silencing enhances susceptibility to Xcv infection, attenuates the reactive oxygen species (ROS) burst and cell death response, reduces SA and jasmonic acid (JA) levels, and disrupts expression of the defense response genes C. annuum pathogenesis-related protein1 (CaPR1; Kim and Hwang, 2000), CaPR10 (Choi et al., 2012), and CaDEF1 (for defensin; Do et al., 2004). Taken together, this study demonstrates that CaHSP70a is a target of the Xanthomonas spp. type III effector AvrBsT and acts as a positive regulator of plant cell death and immunity signaling.  相似文献   

10.
11.
Plants are highly capable of recognizing and defending themselves against invading microbes. Adapted plant pathogens secrete effector molecules to suppress the host's immune system. These molecules may be recognized by host‐encoded resistance proteins, which then trigger defense in the form of the hypersensitive response (HR) leading to programmed cell death of the host tissue at the infection site. The three proteins PEN1, PEN2 and PEN3 have been found to act as central components in cell wall‐based defense against the non‐adapted powdery mildew Blumeria graminis fsp. hordei (Bgh). We found that loss of function mutations in any of the three PEN genes cause decreased hypersensitive cell death triggered by recognition of effectors from oomycete and bacterial pathogens in Arabidopsis. There were considerable additive effects of the mutations. The HR induced by recognition of AvrRpm1 was almost completely abolished in the pen2 pen3 and pen1 pen3 double mutants and the loss of cell death could be linked to indole glucosinolate breakdown products. However, the loss of the HR in pen double mutants did not affect the plants' ability to restrict bacterial growth, whereas resistance to avirulent isolates of the oomycete Hyaloperonospora arabidopsidis was strongly compromised. In contrast, the double and triple mutants demonstrated varying degrees of run‐away cell death in response to Bgh. Taken together, our results indicate that the three genes PEN1, PEN2 and PEN3 extend in functionality beyond their previously recognized functions in cell wall‐based defense against non‐host pathogens.  相似文献   

12.
13.
Lee SC  Hwang BK 《Planta》2005,221(6):790-800
The inoculation of primary pepper leaves with an avirulent strain of Xanthomonas campestris pv. vesicatoria induced systemic acquired resistance (SAR) in the non-inoculated, secondary leaves. This SAR response was accompanied by the systemic expression of the defense-related genes, a systemic microoxidative burst generating H2O2, and the systemic induction of both ion-leakage and callose deposition in the non-inoculated, secondary leaves. Some defense-related genes including those encoding PR-1, chitinase, osmotin, peroxidase, PR10, thionin, and SAR8.2 were markedly induced in the systemic leaves. The conspicuous systemic accumulation of H2O2 and the strong increase in peroxidase activity in the pepper leaves was suggested to play a role in the cell death process in the systemic micro-hypersensitive responses (HR), leading to the induction of the SAR. Treatment of the primary leaves with diphenylene iodinium (DPI), an inhibitor of oxidative burst, substantially reduced the induction of some of the defense-related genes, and lowered the activation of the oxidative bursts in the systemic leaves distant from the site of the avirulent pathogen inoculation and subsequently SAR. Overall, these results suggest that the induction of some defense-related genes as well as a rapid increase in oxidative burst is essential for establishing SAR in pepper plants.  相似文献   

14.
15.
Heat‐shock proteins such as HSP70 and HSP90 are important molecular chaperones that play critical roles in biotic and abiotic stress responses; however, the involvement of their co‐chaperones in stress biology remains largely uninvestigated. In a screen for candidate genes stimulating cell death in Glycine max (soybean), we transiently overexpressed full‐length cDNAs of soybean genes that are highly induced during soybean rust infection in Nicotiana benthamiana leaves. Overexpression of a type‐III DnaJ domain‐containing HSP40 (GmHSP40.1), a co‐chaperone of HSP70, caused hypersensitive response (HR)‐like cell death. The HR‐like cell death was dependent on MAPKKKα and WIPK, because silencing each of these genes suppressed the HR. Consistent with the presence of a nuclear localization signal (NLS) motif within the GmHSP40.1 coding sequence, GFP‐GmHSP40.1 was exclusively present in nuclear bodies or speckles. Nuclear localization of GmHSP40.1 was necessary for its function, because deletion of the NLS or addition of a nuclear export signal abolished its HR‐inducing ability. GmHSP40.1 co‐localized with HcRed‐SE, a protein involved in pri‐miRNA processing, which has been shown to be co‐localized with SR33‐YFP, a protein involved in pre‐mRNA splicing, suggesting a possible role for GmHSP40.1 in mRNA splicing or miRNA processing, and a link between these processes and cell death. Silencing GmHSP40.1 enhanced the susceptibility of soybean plants to Soybean mosaic virus, confirming its positive role in pathogen defense. Together, the results demonstrate a critical role of a nuclear‐localized DnaJ domain‐containing GmHSP40.1 in cell death and disease resistance in soybean.  相似文献   

16.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

17.
Mitochondrial dynamics and functionality are linked to the autophagic degradative pathway under several stress conditions. However, the interplay between mitochondria and autophagy upon cell death signalling remains unclear. The T‐cell receptor pathway signals the so‐called activation‐induced cell death (AICD) essential for immune tolerance regulation. Here, we show that this apoptotic pathway requires the inhibition of macroautophagy. Protein kinase‐A activation downstream of T‐cell receptor signalling inhibits macroautophagy upon AICD induction. This leads to the accumulation of damaged mitochondria, which are fragmented, display remodelled cristae and release cytochrome c, thereby driving apoptosis. Autophagy‐forced reactivation that clears the Parkin‐decorated mitochondria is as effective in inhibiting apoptosis as genetic interference with cristae remodelling and cytochrome c release. Thus, upon AICD induction regulation of macroautophagy, rather than selective mitophagy, ensures apoptotic progression.  相似文献   

18.
Stomata mediate gas exchange between the inter‐cellular spaces of leaves and the atmosphere. CO2 levels in leaves (Ci) are determined by respiration, photosynthesis, stomatal conductance and atmospheric [CO2]. [CO2] in leaves mediates stomatal movements. The role of guard cell photosynthesis in stomatal conductance responses is a matter of debate, and genetic approaches are needed. We have generated transgenic Arabidopsis plants that are chlorophyll‐deficient in guard cells only, expressing a constitutively active chlorophyllase in a guard cell specific enhancer trap line. Our data show that more than 90% of guard cells were chlorophyll‐deficient. Interestingly, approximately 45% of stomata had an unusual, previously not‐described, morphology of thin‐shaped chlorophyll‐less stomata. Nevertheless, stomatal size, stomatal index, plant morphology, and whole‐leaf photosynthetic parameters (PSII, qP, qN, FV′/FM′) were comparable with wild‐type plants. Time‐resolved intact leaf gas‐exchange analyses showed a reduction in stomatal conductance and CO2‐assimilation rates of the transgenic plants. Normalization of CO2 responses showed that stomata of transgenic plants respond to [CO2] shifts. Detailed stomatal aperture measurements of normal kidney‐shaped stomata, which lack chlorophyll, showed stomatal closing responses to [CO2] elevation and abscisic acid (ABA), while thin‐shaped stomata were continuously closed. Our present findings show that stomatal movement responses to [CO2] and ABA are functional in guard cells that lack chlorophyll. These data suggest that guard cell CO2 and ABA signal transduction are not directly modulated by guard cell photosynthesis/electron transport. Moreover, the finding that chlorophyll‐less stomata cause a ‘deflated’ thin‐shaped phenotype, suggests that photosynthesis in guard cells is critical for energization and guard cell turgor production.  相似文献   

19.
20.
Survival of plants at low temperature depends on mechanisms for limiting physiological damage and maintaining growth. We mapped the chs1‐1 (chilling sensitive1‐1) mutation in Arabidopsis accession Columbia to the TIR‐NBS gene At1g17610. In chs1‐1, a single amino acid exchange at the CHS1 N‐terminus close to the conserved TIR domain creates a stable mutant protein that fails to protect leaves against chilling stress. The sequence of another TIR‐NBS gene (At5g40090) named CHL1 (CHS1‐like 1) is related to that of CHS1. Over‐expression of CHS1 or CHL1 alleviates chilling damage and enhances plant growth at moderate (24°C) and chilling (13°C) temperatures, suggesting a role for both proteins in growth homeostasis. chs1‐1 mutants show induced salicylic acid production and defense gene expression at 13°C, indicative of autoimmunity. Genetic analysis of chs1‐1 in combination with defense pathway mutants shows that chs1‐1 chilling sensitivity requires the TIR‐NBS‐LRR and basal resistance regulators encoded by EDS1 and PAD4 but not salicylic acid. By following the timing of metabolic, physiological and chloroplast ultrastructural changes in chs1‐1 leaves during chilling, we have established that alterations in photosynthetic complexes and thylakoid membrane integrity precede leaf cell death measured by ion leakage. At 24°C, the chs1‐1 mutant appears normal but produces a massive necrotic response to virulent Pseudomonas syringae pv. tomato infection, although this does not affect bacterial proliferation. Our results suggest that CHS1 acts at an intersection between temperature sensing and biotic stress pathway activation to maintain plant performance over a range of conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号