首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The therevoid clade represents a group of four families (Apsilocephalidae, Evocoidae, Scenopinidae and Therevidae) of lower brachyceran Diptera in the superfamily Asiloidea. The largest of these families is that of the stiletto flies (Therevidae). A large‐scale (i.e. supermatrix) phylogeny of Therevidae is presented based on DNA sequence data from seven genetic loci (16S, 18S and 28S ribosomal DNA and four protein‐encoding genes: elongation factor 1‐alpha, triose phosphate isomerase, short‐wavelength rhodopsin and the CPSase region of carbamoyl‐phosphate synthase‐aspartate transcarbamoylase‐dihydroorotase). Results are presented from Bayesian phylogenetic analyses of approximately 8.7 kb of sequence data for 204 taxa representing all subfamilies and genus groups of Therevidae. Our results strongly support the sister‐group relationship between Therevidae and Scenopinidae, with Apsilocephalidae as sister to Evocoidae. Previous estimates of stiletto fly phylogeny based on morphology or DNA sequence data, or supertree analysis, have failed to find significant support for relationships among subfamilies. We report for the first time strong support for the placement of the subfamily Phycinae as sister to the remaining Therevidae, originating during the Mid Cretaceous. As in previous studies, the sister‐group relationship between the species‐rich subfamilies Agapophytinae and Therevinae is strongly supported. Agapophytinae are recovered as monophyletic, inclusive of the Taenogera group. Therevinae comprise the bulk of the species richness in the family and appear to be a relatively recent and rapid radiation originating in the southern hemisphere (Australia + Antarctica + South America) during the Late Cretaceous. Genus groups are defined for all subfamilies based on these results.  相似文献   

2.
Abstract.  The monotypic new family Ocoidae is described to accommodate Ocoa gen.n., small, elongate, delicate, asiloid flies known from west-central Chile, South America. Both sexes of adult O. chilensis sp.n. are described and illustrated; immature stages are unknown. Diagnostic morphological features of adults include the antennal postpedicel comprising a single, undivided structure consisting of a bulbous base and a long, threadlike terminal element; vein M3 lacking, anal vein complete; acropod heterodactylus; spurs lacking on all tibiae; and anterior surface of hind coxa with strong, knoblike, bulbous projection; and abdominal tergite 2 lacking sensory patches of hairs. The epandrium of the male terminalia is divided along the midline into two sicklelike sections; gonostyli articulate in a horizontal plane. The female terminalia has well-developed acanthophorite spines; posterior margin of hypoproct with several ventrally projecting, elongate, needlelike setae; two large, poorly sclerotized spermathecae; and a spermathecal sac that is smaller than each spermatheca. The relationships of this enigmatic family are discussed in relation to recent findings on the phylogeny and classification of the Asiloidea. Ocoidae are similar to Therevidae and close relatives Scenopinidae and Apsilocephalidae, comprising the therevoid group of families; however, they lack defining synapomorphies of those families. Morphological evidence supports a sister-group relationship between Ocoidae and Scenopinidae. Molecular evidence from 28S rDNA provides further support for the monophyly of the therevoid group of families, and suggests that Ocoidae belongs within this clade, in agreement with the morphological data. The nucleotide data place Ocoidae as sister to the Scenopinidae + Therevidae, but the morphology-based hypothesis of relationships (Ocoidae + Scenopinidae) is only two additional steps (0.2%) on the optimal trees from the molecular data.  相似文献   

3.
With over 80 000 described species, Brachycera represent one of the most diverse clades of organisms with a Mesozoic origin. Larvae of the majority of early lineages are detritivores or carnivores. However, Brachycera are ecologically innovative and they now employ a diverse range of feeding strategies. Brachyceran relationships have been the subject of numerous qualitative analyses using morphological characters. These analyses are often based on characters from one or a few character systems and general agreement on relationships has been elusive. In order to understand the evolution of basal brachyceran lineages, 101 discrete morphological characters were scored and compiled into a single data set. Terminals were scored at the family level, and the data set includes characters from larvae, pupae and adults, internal and external morphology, and male and female terminalia. The results show that all infraorders of Brachycera are monophyletic, but there is little evidence for relationships between the infraorders. Stratiomyomorpha, Tabanomorpha, and Xylophagomorpha together form the sister group to Muscomorpha. Xylophagomorpha and Tabanomorpha are sister groups. Within Muscomorpha, the paraphyletic Nemestrinoidea form the two most basal lineages. There is weak evidence for the monophyly of Asiloidea, and Hilarimorphidae appear to be more closely related to Eremoneura than other muscomorphs. Apsilocephalidae, Scenopinidae and Therevidae form a clade of Asiloidea. This phylogenetic evidence is consistent with the contemporaneous differentiation of the main brachyceran lineages in the early Jurassic. The first major radiation of Muscomorpha were asiloids and they may have diversified in response to the radiation of angiosperms in the early Cretaceous.  相似文献   

4.
Oryzomyini is the richest tribe among the Sigmodontine rodents, encompassing 32 living and extinct genera and including an increasing number of recently described species and genera. Some Oryzomyini are tetralophodont showing a reduction in the number of molar folds to four, while most taxa in this tribe retain the plesiomorphic pentalophodont state. We applied phylogenetic methods, molecular dating techniques and ancestral area analyses to members of an oryzomyini clade informally named ‘D’ in former studies and included related fossil tetralophodont forms. Based on 98 morphological characters and sequences of five gene fragments, we found that the tetralophodont condition is paraphyletic. Among living taxa, Pseudoryzomys is sister to Holochilus, and Lundomys is derived from a basal divergence. A clade formed by living Holochilus and the fossils Noronhomys and Carletonomys is sister to Holochilus primigenus, making Holochilus paraphyletic. Therefore, we describe a new genus that accommodates the fossil H. primigenus. Because trans‐Andean taxa currently share a common ancestor with taxa of cis‐Adean distribution, the northern Andes uplift may have worked as a postdispersal barrier. The tetralophodont lineages diverged during the Pliocene from a cis‐Andean ancestor, and the Great Plains in South America may have favoured the diversification of tetralophodont forms adapted to open habitats during the Pliocene.  相似文献   

5.
Puffins, auks and their allies in the wing‐propelled diving seabird clade Pan‐Alcidae (Charadriiformes) have been proposed to be key pelagic indicators of faunal shifts in Northern Hemisphere oceans. However, most previous phylogenetic analyses of the clade have focused only on the 23 extant alcid species. Here we undertake a combined phylogenetic analysis of all previously published molecular sequence data (~ 12 kb) and morphological data (n = 353 characters) with dense species level sampling that also includes 28 extinct taxa. We present a new estimate of the patterns of diversification in the clade based on divergence time estimates that include a previously vetted set of twelve fossil calibrations. The resultant time trees are also used in the evaluation of previously hypothesized paleoclimatic drivers of pan‐alcid evolution. Our divergence dating results estimate the split of Alcidae from its sister taxon Stercorariidae during the late Eocene (~ 35 Ma), an evolutionary hypothesis for clade origination that agrees with the fossil record and that does not require the inference of extensive ghost lineages. The extant dovekie Alle alle is identified as the sole extant member of a clade including four extinct Miocene species. Furthermore, whereas an Uria + Alle clade has been previously recovered from molecular analyses, the extinct diversity of closely related Miocepphus species yields morphological support for this clade. Our results suggest that extant alcid diversity is a function of Miocene diversification and differential extinction at the Pliocene–Pleistocene boundary. The relative timing of the Middle Miocene climatic optimum and the Pliocene–Pleistocene climatic transition and major diversification and extinction events in Pan‐Alcidae, respectively, are consistent with a potential link between major paleoclimatic events and pan‐alcid cladogenesis.  相似文献   

6.
Epicaridean isopods are parasitic on other crustaceans. They represent a diverse group of highly derived taxa in two superfamilies and 10 families. Little work has been done on the phylogeny of these parasites because of the difficulty in defining homologous characters for adults above the genus level. The females exhibit morphological reduction of characters and the males have few distinguishing characters. Moreover, epicarideans have only rarely been included in past studies of isopod phylogeny. Our objective was to derive a phylogeny of epicaridean taxa based on 18S rDNA, then use that phylogeny to examine the relationships of the bopyrid subfamilies, bopyroid families and epicarideans to cymothoid isopods. We tested the monophyly of the Epicaridea, evaluated hypotheses on relationships among epicaridean families and subfamilies, examined the evolution of the abdominal mode of infestation on caridean, gebiidean, axiidean and anomuran hosts and examined coevolution between epicarideans and their crustacean hosts. The molecular phylogeny indicated that Epicaridea were monophyletic with respect to Cymothooidea. Bopyroidea formed a monophyletic group without Dajidae and Entophilinae (now as Entophilidae). Both latter taxa grouped with Cryptoniscoidea, and this group was the sister taxon to the redefined Bopyroidea in all trees. The bopyrid subfamily Ioninae is the sister taxon to the other bopyrid subfamilies (except Entophilidae). Ioninae was elevated to family status but found not to be monophyletic; a new subfamily, Keponinae, was erected for all genera formerly placed in Ioninae except the type genus. The abdominal mode of parasitism appears to have evolved independently among the subfamilies. Coevolution between host and parasite phylogenies showed extensive incongruence, indicating frequent host-switching as a general pattern in Epicaridea.

http://www.zoobank.org/urn:lsid:zoobank.org:pub:30ECFB13-2795-494E-AABE-6B5F84A57A67  相似文献   

7.
Haplodiploidy is a highly unusual genetic system that has arisen at least 17 times in animals of varying lifestyles, but most of these haplodiploid lineages remain relatively poorly known. In particular, the ecological and genetic circumstances under which haplodiploidy originates have been difficult to resolve. A recent molecular‐phylogenetic study has resolved the phylogenetic position of the haplodiploid clade of scolytine beetles as the sister group of the genus Dryocoetes. Haplodiploid bark beetles are remarkable in that the entire clade of over 1300 species are apparently extreme (sib‐mating) inbreeders, most of which cultivate fungi for food while some attack phloem, twigs or seeds. Here we present a much more detailed molecular‐phylogenetic study of this clade. Using partial sequences of elongation factor 1‐alpha and the mitochondrial small ribosomal subunit (12S), we reconstructed the phylogeny for 48 taxa within the haplodiploid clade, as well as two species of the diplodiploid sister genus Dryocoetes. Results indicate that the genus Ozopemon is the basal lineage of die haplodiploid clade. Since Ozopemon, Dryocoetes, and other outgroups are phloem‐feeding, this strongly suggest that haplodiploidy and inbreeding evolved in a phloem feeding ancestor. Following the divergence of Ozopemon there is a series of extremely short internodes near the base of the clade, suggesting a very rapid rate of diversification in early Miocene (based on fossil evidence and sequence divergence). Among the many substrates for breeding and food resources utilized within this species‐rich clade, the cultivation of yeast‐like ambrosia fungi in tunnels deep into the wood predominates (nearly 90% of the species). The number of transitions to feeding on such fungi was few, possibly only one, and is perhaps an irreversible transition. The habit of feeding on fungi cultured in xylem makes it possible for the beetles to use a great variety of plant taxa. This extreme resource generalism, in conjunction with the colonization advantage conferred by haplodiploidy and inbreeding, may have promoted the rapid diversification of this clade.  相似文献   

8.
In order to classify and taxonomically describe the first two fossil Othiini (Coleoptera: Staphylinidae: Staphylininae) species from three well‐preserved specimens in Cretaceous Burmese amber, a phylogenetic analysis was conducted, combining extant and extinct taxa. A dataset of 76 morphological characters scored for 33 recent species across the subfamilies Staphylininae and Paederinae was analysed using maximum parsimony and Bayesian inference methods. The many differing phylogenetic hypotheses for higher‐level relationships in the large rove beetle subfamilies Staphylininae and Paederinae were summarized and their hitherto known fossil record was reviewed. Based on the analyses, the new extinct genus Vetatrecus gen.n. is described with two new species: V. adelfiae sp.n. and V. secretum sp.n. Both species share character states that easily distinguish them from all recent Othiini and demonstrate a missing morphological link between subfamilies Staphylininae and Paederinae. This is the first morphology‐based evidence for the paraphyly of Staphylininae with respect to Paederinae, suggested earlier by two independent molecular‐based phylogenies of recent taxa. Our newly discovered stem lineage of Othiini stresses the importance of fossils in phylogenetic analyses conducted with the aim of improving the natural classification of extant species. It also suggests that the definitions of Staphylininae and Paederinae, long‐established family‐group taxa, may have to be reconsidered. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:817F39C4-F36B-4FD9-96CD-5F8FB064C39E .  相似文献   

9.
A remarkable new genus and two new species of Mantispidae (Neuroptera) are described from the Oriental region. Allomantispa Liu, Wu, Winterton & Ohl gen.n. , currently including A. tibetana Liu, Wu & Winterton sp.n. and A. mirimaculata Liu & Ohl sp.n. The new genus is placed in the subfamily Drepanicinae based on a series of morphological characteristics and on the results of total evidence phylogenetic analyses. Bayesian and Parsimony analyses were undertaken using three gene loci (CAD, 16S rDNA and COI) combined with 74 morphological characters from living and fossil exemplars of Mantispidae (17 genera), Rhachiberothidae (two genera) and Berothidae (five genera), with outgroup taxa from Dilaridae and Osmylidae. The resultant phylogeny presented here recovered a monophyletic Mantispidae with ?Mesomantispinae sister to the rest of the family. Relationships among Mantispidae, Rhachiberothidae and Berothidae support Rhachiberothidae as a separate family sister to Mantispidae. Within Mantispidae, Drepanicinae are a monophyletic clade sister to Calomantispinae and Mantispinae. In a combined analysis, Allomantispa gen.n. was recovered in a clade comprising Ditaxis McLachlan from Australia, and two fossil genera from the Palaearctic, ?Promantispa Panfilov (Kazakhstan; late Jurassic) and ?Liassochrysa Ansorge & Schlüter (Germany; Jurassic), suggesting a highly disjunct and relictual distribution for the family. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:464B06E8‐47E6‐482E‐8136‐83FE3B2E9D6B .  相似文献   

10.
A parsimony‐based phylogenetic analysis of eighty‐three morphological characters of adults and immatures of seventy representatives of the tribes and subfamilies of Membracidae and two outgroup taxa was conducted to evaluate the status and relationships of these taxa. Centrotinae apparently gave rise to Nessorhinini and Oxyrhachini (both formerly treated as subfamilies, now syn.n. and syn.reinst., respectively, of Centrotinae). In contrast to previous analyses, a clade comprising Nicomiinae, Centronodinae, Centrodontinae, and the unplaced genera Holdgatiella Evans, Euwalkeria Goding and Antillotolania Ramos was recovered, but relationships within this clade were not well resolved. Nodonica bispinigera, gen.n. and sp.n., is described and placed in Centrodontini based on its sister‐group relationship to a clade comprising previously described genera of this tribe. Membracinae and Heteronotinae were consistently monophyletic. Neither Darninae nor Smiliinae, as previously defined, was monophyletic on the maximally parsimonious cladograms, but constraining both as monophyletic groups required only one additional step. The monophyly of Stegaspidinae, including Deiroderes Ramos (unplaced in Membracidae), was supported on some but not all equally parsimonious cladograms. More detailed analyses of individual subfamilies, as well as morphological data on the undescribed immatures of several membracid tribes and genera, will be needed to elucidate relationships among tribes and genera. A key to the subfamilies and tribes is provided.  相似文献   

11.
Panochthus and Glyptodon are the Pleistocene Glyptodontidae having the greatest range of latitudinal distribution and elevation in South America. The most recent revisions of Panochthus recognized its high taxonomic diversification mainly distributed in the Chaco-Pampean region of Argentina, Uruguay, southern Bolivia and southern and north-eastern Brazil, while the Andean records are poorly known. This contribution aims: (a) to describe a new species of Panochthus from the Pleistocene of the surroundings of Potosi (Bolivia), which represents one of the highest known elevation records for fossil Xenarthra; (b) to carry out a phylogenetic analysis in order to test its location in Panochthus and relationship to some allied genera; (c) to discuss some palaeobiogeographical and morphological implications. The results show that, in agreement with previous studies, Panochthus is a natural group, being Propanochthus the sister taxa. This conclusion agrees, at least in part, with the original interpretation of Burmeister, who recognized Pr. bullifer as belonging to Panochthus. The genera Nopachtus and Phlyctaenopyga are more closely related to some ‘Plohophorini’ than to the clade Propanochthus + Panochthus. Within Panochthus, this new species occupies a relatively basal position as a sister taxon of the clade composed of P. tuberculatus, P. intermedius, and P. greslebini.http://zoobank.org/lsid:zoobank.org:pub:5A766550-DBCA-4C4A-BDB8-602E500E4954  相似文献   

12.
The superfamilies of Elateriformia have been in a state of flux since their establishment. The recent classifications recognize Dascilloidea, Buprestoidea, Byrrhoidea and Elateroidea. The most problematic part of the elateriform phylogeny is the monophyly of Byrrhoidea and the relationships of its families. To investigate these issues, we merged more than 500 newly produced sequences of 18S rRNA, 28S rRNA, rrnL mtDNA and cox1 mtDNA for 140 elateriform taxa with data from GenBank. We assembled an all‐taxa (488 terminals) and a pruned data set, which included taxa with full fragment representation (251 terminals); both were aligned in various programs and analysed using maximum‐likelihood criterion and Bayesian inference. Most analyses recovered monophyletic superfamilies and broadly similar relationships; however, we obtained limited statistical support for the backbone of trees. Dascilloidea were sister to the remaining Elateriformia, and Elateroidea were sister to the clade of byrrhoid lineages including Buprestoidea. This clade mostly consisted of four major lineages, that is (i) Byrrhidae, (ii) Dryopidae + Lutrochidae, (iii) Buprestoidea (Schizopodidae sister to Buprestidae) and (iv) a clade formed by the remaining byrrhoid families. Buprestoidea and byrrhoid lineages, with the exception of Byrrhidae and Dryopidae + Lutrochidae, were usually merged into a single clade. Most byrrhoid families were recovered as monophyletic. Callirhipidae and Eulichadidae formed independent terminal lineages within the Byrrhoidea–Buprestoidea clade. Paraphyletic Limnichidae were found in a clade with Heteroceridae and often also with Chelonariidae. Psephenidae, represented by Eubriinae and Eubrianacinae, never formed a monophylum. Ptilodactylidae were monophyletic only when Paralichas (Cladotominae) was excluded. Elmidae regularly formed a clade with a bulk of Ptilodactylidae; however, elmid subfamilies (Elminae and Larainae) were not recovered. Despite the densest sampling of Byrrhoidea diversity up to date, the results are not statistically supported and resolved only a limited number of relationships. Furthermore, questions arose which should be considered in the future studies on byrrhoid phylogeny.  相似文献   

13.
We present a molecular phylogeny of Nitidulidae based on thirty ingroup taxa representing eight of the ten currently recognized subfamilies. Approximately 10 K base pairs from seven loci (12S, 16S, 18S, 28S, COI, COII and H3) were used for the phylogenetic reconstruction. The phylogeny supports the following main conclusions: (i) Cybocephalidae are formally recognized as a distinct family not closely related to Nitidulidae and its constituent taxa are defined; (ii) Kateretidae are sister to Nitidulidae; (iii) Cryptarchinae are monophyletic and sister to the remaining nitidulid subfamilies; (iv) subfamily Prometopinae stat. res. is reinstated and defined, to accommodate taxa allied to Axyra Erichson, Prometopia Erichson and Megauchenia MacLeay; (v) Amphicrossinae, Carpophilinae and Epuraeinae are shown to be closely related taxa within a well‐supported monophyletic clade; (vi) tribal affinities and respective monophyly within Nitidulinae are poorly resolved by our data and must be more rigorously tested as there was little or no support for prior morphologically based tribes or genus‐level complexes; (vii) Nitidulinae are found to be paraphyletic with respect to Cillaeinae and Meligethinae, suggesting that they should either be subsumed as tribes, or Nitidulinae should be divided into several subfamilies to preserve the status of Cillaeinae and Meligethinae; (viii) Teichostethus Sharp stat. res. is not a synonym of Hebascus Erichson and the former is reinstated as a valid genus. These conclusions and emendations are discussed in detail and presented within a morphological framework.  相似文献   

14.
As a step towards understanding the higher‐level phylogeny and evolutionary affinities of quadrifid noctuoid moths, we have undertaken the first large‐scale molecular phylogenetic analysis of the moth family Erebidae, including almost all subfamilies, as well as most tribes and subtribes. DNA sequence data for one mitochondrial gene (COI) and seven nuclear genes (EF‐1α, wingless, RpS5, IDH, MDH, GAPDH and CAD) were analysed for a total of 237 taxa, principally type genera of higher taxa. Data matrices (6407 bp in total) were analysed by parsimony with equal weighting and model‐based evolutionary methods (maximum likelihood), which revealed a well‐resolved skeleton phylogenetic hypothesis with 18 major lineages, which we treat here as subfamilies of Erebidae. We thus present a new phylogeny for Erebidae consisting of 18 moderate to strongly supported subfamilies: Scoliopteryginae, Rivulinae, Anobinae, Hypeninae, Lymantriinae, Pangraptinae, Herminiinae, Aganainae, Arctiinae, Calpinae, Hypocalinae, Eulepidotinae, Toxocampinae, Tinoliinae, Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae. Where possible, each monophyletic lineage is diagnosed by autapomorphic morphological character states, and within each subfamily, monophyletic tribes and subtribes can be circumscribed, most of which can also be diagnosed by morphological apomorphies. All additional taxa sampled fell within one of the four previously recognized quadrifid families (mostly into Erebidae), which are now found to include two unusual monobasic taxa from New Guinea: Cocytiinae (now in Erebidae: Erebinae) and Eucocytiinae (now in Noctuidae: Pantheinae).  相似文献   

15.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

16.
Cupedidae, the most species‐rich family of the archaic suborder Archostemata, were abundant, diverse and widespread in the Mesozoic, yet little is known about the early evolution and biogeography. This stems, in part, from a lack of exceptionally preserved fossils from the Mesozoic and of formal phylogenetic study of both extant and extinct taxa. Here we describe and illustrate a new fossil from mid‐Cretaceous Burmese amber, and provide a phylogeny combining both fossils and all known extant genera of Archostemata. A dataset of 43 ingroup taxa and four outgroup taxa based on 110 morphological characters was analysed under parsimony. The results indicate that Priacma LeConte and Paracupes Kolbe, as well as the Cretaceous genera Barbaticupes Jarzembowski et al. and Mallecupes Jarzembowski et al., together form a sister clade to the rest of Cupedidae. Priacma megapuncta sp.n. is attributed to the relict North American Priacma by the presence of distinct subtruncate elytral apices, lateral elytral margins with two rows of sharp teeth, and peculiar fixing epipleural folds near the elytral apices. Our discovery of the first fossil species of Priacma in Burmese amber reveals the antiquity and wider distribution of the genus in the late Mesozoic. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:313565C2‐4F42‐48BD‐8720‐F379DE202868 .  相似文献   

17.
The bot fly Gruninomyia mira Szpila & Pape, gen.n. , sp.n. is described from Iran, North Khorasan, based on a single adult male and with no larval or host data. The monotypic genus shows a mixture of features otherwise found in either the rodent/lagomorph‐parasitizing oestromyine clade (Oestroderma + Oestromyia) or the artiodactyl‐parasitizing hypodermatine clade (Hypoderma + Pallasiomyia + Pavlovskiata + Przhevalskiana + Strobiloestrus) of subfamily Hypodermatinae. A morphology‐based phylogenetic analysis is marginally in favour of a position of Gruninomyia Szpila & Pape, gen.n. as sister taxon of (Oestroderma + Oestromyia). The COI barcode sequence is provided for the new species, and a phylogenetic analysis based on this marker for Oestridae retrieved from GenBank is in agreement with the conclusions based on morphological data. This published work has been registered in ZooBank: http://zoobank.org/urn:lsid:zoobank.org:pub:8F0CBE07‐4E74‐4186‐B690‐2C97D7ED7DA7 .  相似文献   

18.
An hypothesis of phylogenetic relationships of Asilidae and its constituent taxa is presented, combining morphological and DNA sequence data in a total evidence framework. It is based on 77 robber fly species, 11 Asiloidea outgroup species, 211 morphological characters of the adult fly, and approximately 7300 bp of nuclear DNA from five genes (18S and 28S rDNA, AATS, CAD, and EF-1α protein-encoding DNA). The equally weighted, simultaneous parsimony analysis under dynamic homology in POY resulted in a single most parsimonious cladogram with a cost of 27,582 (iterative pass optimization; 27,703 under regular direct optimization). Six of the 12 included subfamily taxa are recovered as monophyletic. Trigonomiminae, previously always considered as monophyletic based on morphology, is shown to be non-monophyletic. Two of the three Trigonomiminae genera, Holcocephala Jaennicke, 1867 and Rhipidocephala Hermann, 1926, group unexpectedly as the sister taxon to all other Asilidae. Laphriinae, previously seen in the latter position, is the sister group of the remaining Asilidae. Five other subfamily taxa, i.e. Brachyrhopalinae, Dasypogoninae, Stenopogoninae, Tillobromatinae, and Willistonininae, are also shown to be non-monophyletic. The phylogenetic relationships among the higher-level taxa are partly at odds with findings of a recently published morphological study based on more extensive taxon sampling. The total evidence hypothesis is considered as the most informative one, but the respective topologies from the total-evidence, morphology-only, and molecular-only analyses are compared and contrasted in order to discuss the signals from morphological versus molecular data, and to analyze whether the molecular data outcompete the fewer morphological characters. A clade Apioceridae+Mydidae is corroborated as the sister taxon to Asilidae.  相似文献   

19.
The Bombyliinae comprises over 1100 described species in 73 known genera distributed worldwide. It is one of the largest subfamilies of bee flies (Diptera: Bombyliidae). We present the first phylogenetic hypothesis for this subfamily, based on 157 adult morphological characters scored for 123 species representing 60 genera, including all the tribes of Bombyliinae, and the related subfamilies Lordotinae and Toxophorinae. Four most parsimonious trees were generated from our analysis under equal weighting schemes. The monophyly of Bombyliinae is supported, and Lordotinae is sister to the Bombyliinae. Within Bombyliinae, Conophorini is sister to the remaining tribes. Five previously recognized tribes are revised and four new tribes are erected. We placed almost all genera in our tribal classification, based on our phylogenetic results and available character evidence. The genus Parabombylius is proposed as a synonym of Bombylius. The Gondwanan origin for the major lineages of Bombyliinae is strongly indicated by our biogeographic analysis which reconstructs ancestral areas. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub: 1EC5C827‐34D5‐4A95‐BA78‐4ACF457F6D40.  相似文献   

20.
Gall formation is a specialised form of phytophagy that consists of abnormal growth of host plant tissue induced by other organisms, principally insects and mites. In the mainly parasitoid wasp subfamily Doryctinae, gall association, represented by gall inducers, inquilines and their parasitoids, is known for species of seven genera. Previous molecular studies recovered few species of six of these genera as monophyletic despite their disparate morphologies. Here, we reconstructed the evolutionary relationships among 47 species belonging to six gall‐associated doryctine genera based on two mitochondrial and two nuclear gene markers. Most of the Bayesian analyses, performed with different levels of incomplete taxa and characters, supported the monophyly of gall‐associated doryctines, with Heterospilus (Heterospilini) as sister group. Percnobracon Kieffer and Jörgensen and Monitoriella Hedqvist were consistently recovered as monophyletic, and the validity of the monotypic Mononeuron was confirmed with respect to Allorhogas Gahan. A nonmonophyletic Allorhogas was recovered, although without significant support. The relationships obtained and the gathered morphological and biological information led us to erect three new genera originally assigned to Psenobolus: Ficobolus gen.n. (F. paniaguai sp.n. and F. jaliscoi sp.n. ), Plesiopsenobolus gen.n. (Pl. mesoamericanus sp.n. , Pl. plesiomorphus van Achterberg and Marsh comb.n. , and Pl. tico sp.n. ), and Sabinita gen.n. (S. mexicana sp.n. ). The origin of the gall‐associated doryctine clade was estimated to have occurred during the middle Miocene to early Oligocene, 16.33–30.55 Ma. Our results support the origin of true gall induction in the Doryctinae from parasitoidism of other gall‐forming insects. Moreover, adaptations to attack different gall‐forming taxa on various unrelated plant families probably triggered species diversification in the main Allorhogas clade and may also have promoted the independent origin of gall formation on at least three plant groups. Species diversification in the remaining doryctine taxa was probably a result of host shifts within a particular plant taxon and shifts to different plant organs. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:0021F253‐4ABA‐4EAA‐A7A9‐FC0AD1932EA3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号