首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Single amino acid substitutions at nine different positions on the H-2Kb molecules from in vitro-mutagenized, immunologically altered, somatic cell variants were correlated with their patterns of recognition by monoclonal antibodies (MAbs) and allogeneic cytotoxic T lymphocyte (CTL) clones. While MAbs were found to detect spatially discrete, domain-specific sites, CTLs interacted simultaneously with multiple residues on the alpha 1 and alpha 2 domains of the Kb molecule. The computer graphic three-dimensional Kb model structure showed that, of the seven CTL-specific residues analyzed, six residues were located on the alpha-helical regions of the two domains. Every CTL clone was found to interact with a distinct pattern of residues composed of a specific subset of the CTL-specific residues.  相似文献   

2.
The CTL response to SV40 in C3H/HeJ mice is directed against the tumor (T) Ag and is H-2Kk restricted. CTL specific for both the amino terminus (residues 1-271) and the carboxyl terminus (residues 512-708) of the T Ag molecule have been detected, and we have previously cloned CTL of both specificities. In this paper we show that the panel of 10 CTL clones specific for the C-terminal region includes clones specific for three different epitopes, termed C1, C2, and C3. Epitopes C1 and C2 are conserved in the T Ag of the related papova viruses BK and SA12, and only epitopes C2 and C3 are present on SV40 transformed targets bearing the Kk mutant Kkml. Epitopes C1 and C2 were mapped to residues 563-576 by using in-frame deletion mutants of SV40 T antigen, and all clones specific for these two epitopes can lyse Kk bearing target cells in the presence of a synthetic peptide comprising residues 559-576. Kk and Kkml differ at residue 152, which is located in the Ag-binding pocket. Because epitopes C1 and C2 can be formed by the same antigenic peptide, but epitope C1 is not present on SV40 transformed Kkml cells, epitopes C1 and C2 must differ in the contribution made by residue 152 of the MHC class I molecule. These data show that CTL epitopes on transformed cells can be made up of Ag fragments, and strengthen the idea that this is a general phenomenon for both class I and class II restricted T cell epitopes.  相似文献   

3.
4.
Most attempts to induce CTL responses by in vivo priming with free synthetic peptides have been unsuccessful so far. However, two separate studies have recently succeeded in inducing antiviral CTL responses by immunizing mice with unmodified free synthetic peptides derived from nucleoproteins from either lymphocytic choriomeningitis virus or Sendai virus. In the present study, we have analyzed the cellular mechanisms by which the lymphocytic choriomeningitis virus synthetic peptide induced CTL responses. We demonstrated that this peptide, which was previously shown to be recognized by CD8+ T cells, also contains a helper CD4+ T cell epitope. It stimulates in vivo both CD4+ T cell-mediated CTL response. The in vivo elimination of CD4+ T cells by treatment with a mAb was shown to strongly reduce the antipeptide CTL response. This study therefore demonstrates that to be able to induce CTL responses, a peptide has to stimulate both CD4+ and CD8+ T cell subset.  相似文献   

5.
The ability of an AIDS virus to escape from immune containment by selective mutation away from recognition by CTL was explored in simian immunodeficiency virus of macaques (SIVmac)-infected rhesus monkeys. CTL recognition of a previously defined common viral mutation in an immunodominant SIVmac Gag epitope was evaluated. CTL were assessed for their ability to recognize a SIVmac Gag protein with a single residue 2 (T --> A) replacement in the minimal epitope peptide bound by the MHC class I molecule Mamu-A*01. SIVmac Gag-specific CTL lysed Mamu-A*01+ target cells infected with recombinant vaccinia virus expressing the wild-type but not the mutant Gag protein. In addition, CTL recognized the mutant epitope peptide less efficiently than the wild-type virus peptide. In studies to determine the mechanism by which the mutant virus evaded CTL recognition, this peptide was shown to bind Mamu-A*01 in a manner that was indistinguishable from the wild-type peptide. However, experiments in which an increasing duration of delay was introduced between peptide sensitization of target cells and the assessment of these cells as targets in killing assays suggest that the mutant peptide with a T --> A replacement had a higher off-rate from Mamu-A*01 than the wild-type peptide did. Therefore, these findings suggest that AIDS viruses can evade virus-specific CTL responses through the accelerated dissociation of mutant peptide from MHC class I.  相似文献   

6.
Although the processing of soluble Ag for presentation to T cells has been extensively studied in vitro, similar studies of phagocytic Ag processing have been limited. We have developed an in vitro model system to study the ability of macrophages to process recombinant Escherichia coli strain HB101 with cytoplasmic or surface expression of the well characterized T cell epitope of hen egg lysozyme (HEL) 52-61. This epitope was expressed within full length HEL or within a fusion protein containing the HEL epitope. Phagocytosis of E. coli with cytoplasmic expression of HEL or the HEL fusion protein resulted in strong presentation of HEL(52-61) to T cells. Surface-conjugated HEL was processed with even greater efficiency. Processing required viable macrophages, was inhibited by cytochalasin D, and was achieved within 20 min of bacterial contact with the macrophages. Within this time span, phagosomes containing bacteria fused with lysosomes, and the bacteria were extensively degraded. Uptake of as few as four bacteria per macrophage produced an Ag-specific T cell response. We conclude that bacterial compartmentalization of the antigenic epitope (cytoplasmic vs surface) had some effect on its processing, but that phagocytic Ag processing organelles contain extensive capacity to degrade internalized bacteria and liberate intracellular Ag epitopes for recycling and presentation, consistent with a central role for phagolysosomes. Thus, future recombinant bacterial vaccines may be effectively designed with T cell epitopes expressed either on the surface or within the bacterial cytoplasm.  相似文献   

7.
The antigenic sites for human T lymphocytes on hepatitis B surface Ag (HBsAg) were studied by using synthetic oligopeptides. T cell lines of the helper/inducer class, which were isolated from hepatitis B vaccine recipients, were found to react strongly and in an Ag-specific way with peptides corresponding to a sequence of 10 to 30 amino acids near the amino terminus of the HBsAg molecule. Cells with surface expression of the antigenic determinant contained in these synthetic peptides induced both proliferative and cytotoxic responses in the hepatitis B-specific T cells. The results indicate that amino acid residues 24-27 of HBsAg could be directly involved in this T cell determinant. Inhibition studies with mAb to MHC class II Ag and target cells from various HLA-typed individuals suggest that some T cell responses to this determinant of HBsAg might be restricted by the DPw4 molecule. However, the possibility exists that more than one of the MHC class II molecules could be involved as restricting elements of T cell responses to this synthetic peptide. In vivo experiments with synthetic peptides such as those described here are needed to demonstrate the possibility of enhancing HBsAg immune responses in some individuals.  相似文献   

8.
Spleen and thymus cell populations from normal or allograft tolerant mice have been cultured for 5 days with specific alloantigens and examined for their reactivity in three assay systems. No consistent correlation was observed between the production of cytotoxic T cells (CTL) in these cultures and the ability of such cultured cells to inhibit specifically a CML response from fresh normal spleen cells directed to the priming alloantigens. Furthermore, suppressor cells measured in this latter assay were apparently distinct from those able to inhibit the production of cytotoxic lymphocyte precursors (CTLp) from bone marrow stem cells in lethally irradiated bone marrow protected mice. Velocity sedimentation experiments confirmed that both the precursor and effector cells for the two suppressor systems were physically separable, and were distinct from CTLp or CTL, respectively. Precursor cells for the two suppressor systems investigated belong to the short-lived cortical thymus cell population.  相似文献   

9.
Replication-deficient viruses provide an attractive alternative to conventional approaches used in the induction of antiviral immunity. We have quantitatively evaluated both the primary and memory cytotoxic T-lymphocyte (CTL) responses elicited by immunization with a replication-deficient mutant of herpes simplex virus type 1 (HSV-1). In addition, we have examined the potential role of these CTL in protection against HSV infection. Using bulk culture analysis and limiting-dilution analysis, we have shown that a replication-deficient virus, d301, generates a strong primary CTL response that is comparable to the response induced by the wild type-strain, KOS1.1. Furthermore, the CTL induced by d301 immunization recognized the immunodominant, H-2Kb-restricted, CTL recognition epitope gB498-505 to a level similar to that for CTL from KOS1.1-immunized mice. The memory CTL response evoked by d301 was strong and persistent, even though the frequencies of CTL were slightly lower than the frequencies of CTL induced by KOS1.1. Adoptive transfer studies indicated that both the CD8+ and the CD4+ T-cell responses generated by immunization with d301 and KOS1.1 were able to limit the extent of a cutaneous HSV infection to comparable levels. Overall, these results indicate that viral replication is not necessary to elicit a potent and durable HSV-specific immune response and suggest that replication-deficient viruses may be effective in eliciting protection against viral pathogens.  相似文献   

10.
The fibrillogenic peptide corresponding to the residues 106-126 of the prion protein sequence (PrP 106-126) is largely used to explore the neurotoxic mechanisms underlying the prion disease. However, whether the neuronal toxicity of PrP 106-126 is caused by a soluble or fibrillar form of this peptide is still unknown. The aim of this study was to correlate the structural state of this peptide with its neurotoxicity. Here we show that the two conserved Gly114 and Gly119 residues, in force of their intrinsic flexibility, prevent the peptide assuming a structured conformation, favouring its aggregation in amyloid fibrils. The substitution of both Gly114 and Gly119 with alanine residues (PrP 106-126 AA mutated peptide) reduces the flexibility of this prion fragment and results in a soluble, beta-structured peptide. Moreover, PrP 106-126 AA fragment was highly toxic when incubated with neuroblastoma cells, likely behaving as a neurotoxic protofibrillar intermediate of the wild-type PrP 106-126. These data further confirm that the fibrillar aggregation is not necessary for the induction of the toxic effects of PrP 106-126.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号