首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evoked focal potentials which were induced in vitro in a slice of olfactory tract by stimulation of the lateral olfactory tract (LOT) have been studied. The potential consisted of an initial biphasic wave, the compound action potential of LOT, population synaptic responses, and population spike. Functional significance and possible mechanisms of changes of different focal potential waves have been discussed.  相似文献   

2.
Using a voltage-sensitive styryl dye, optical recordings ofthe piriform cortex responses to bipolar electrical stimulationsof the rat lateral olfactory tract (LOT) were taken. Surgicalprocedures were performed on Wistar SPF male rats anaesthetizedwith equithesine. Anaesthesia was continued during the recording.In addition the animals were curarized and artificially ventilated.Piriform cortex was stained with RH795. Cortical fluorescencewas recorded with a 124-element photodiode array using epi-illuminationwhile electrical stimulations were delivered to the LOT. Mappingof the piriform activity indicated a very large overlap of therecorded responses. Nevertheless, some differences in locationof recorded responses were observed and seemed to correlatewith the location of the stimulation electrode on the LOT. Theresults are discussed in relation to the anatomy and histologyof the olfactory bulb projections to the piriform cortex.  相似文献   

3.
Animals were trained to discriminate two natural odors while another group was trained to discriminate between a patterned electrical stimulation distributed on the lateral olfactory tract (LOT), labelled olfaco-mimetic stimulation (OMS), used as an olfactory cue versus a natural odor. No statistically significant difference was observed in behavioral data between these two groups. The animals trained to learn the meaning of the OMS exhibited a gradual long-term potentiation (LTP) phenomenon in the piriform cortex. When a group of naive animals was pseudo-conditioned, giving the OMS for the same number of sessions but without any olfactory training, no LTP was recorded. These results indicate that the process of learning olfactory association gradually potentiates cortical synapses in a defined cortical terminal field, and may explain why LTP in the piriform cortex is not elicited by the patterned stimulation itself, but only in an associative context. As olfactory and hippocampus regions are connected via the lateral entorhinal cortex, the olfactomimetic model was used to study the dynamic of involvement of the dentate gyrus (DG) in learning and memory of this associative olfactory task. Polysynaptic field potentials, evoked by the LOT stimulation, were recorded in the molecular layer of the ipsilateral DG. An early and rapid (2nd session) potentiation was observed when a significant discrimination of the two cues began to be observed. The onset latency of the potentiated response was 30–40 ms. When a group of naive animals was pseudoconditioned, no change was observed. Taken together, these results support the hypothesis that early activation of the DG during the learning of olfactory cue allows the progressive storage of olfactory information in a defined set of potentiated cortical synapses. The onset latency of the polysynaptic potentiated responses suggests the existence of a reactivating hippocampal loops during the processing of olfactory information.  相似文献   

4.
In mice, mitral cells are the major efferent neurons of the main olfactory bulb and elongate axons into a very narrow part of the telencephalon to form a fiber bundle referred to as the lateral olfactory tract (LOT). To clarify the mechanisms responsible for guidance of mitral cell axons along this particular pathway, we co-cultured mouse embryo main olfactory bulbs with the telencephalons, and analyzed the pathways taken by mitral cell axons. Ingrowth of mitral cell axons into the telencephalon was observed in those co-cultures in which the olfactory bulbs had been exactly combined to their normal pathway (the LOT position) of the telencephalon. The axons grew preferentially along the LOT position, and formed a LOT-like fiber bundle. When the olfactory bulbs were grafted at positions apart from their normal pathway, however, no mitral cell axons grew into the telencephalon. Neocortical fragments combined with the telencephalon projected fibers into the telencephalon in random directions. These results suggest that the LOT position of the telencephalon offers a guiding pathway for mitral cell axons and that guiding cues for mitral cell axons are extremely localized. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.  相似文献   

6.
7.
Kang N  Baum MJ  Cherry JA 《Chemical senses》2011,36(3):251-260
A whole-mount, flattened cortex preparation was developed to compare profiles of axonal projections from main olfactory bulb (MOB) and accessory olfactory bulb (AOB) mitral and tufted (M/T) cells. After injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin, mapping of labeled axons using a Neurolucida system showed that M/T cells in the AOB sent axons primarily to the medial and posterior lateral cortical amygdala, with minimal branching into the piriform cortex. By contrast, M/T cells in the MOB displayed a network of collaterals that branched off the primary axon at several levels of the lateral olfactory tract (LOT). Collaterals emerging from the LOT into the anterior piriform cortex were often observed crossing into the posterior piriform cortex. M/T cells in the dorsal MOB extended fewer collaterals from the primary axon in the rostral LOT than did M/T cells from the anterior or ventral MOB. MOB M/T cells that projected to the medial amygdala did not do so exclusively, also sending collaterals to the anterior cortical amygdala as well as to olfactory cortical regions. This arrangement may be related to the ability of social experience to modify the response of mice to volatile pheromones detected by the main olfactory system.  相似文献   

8.
Slices from the guinea-pig olfactory cortex were incubated in the medium containing [14C]glutamate and release of radioactive compounds was subsequently studied in the standard or high potassium media or during repetitive stimulation of the lateral olfactory tract (LOT) while electrical activity of the tissue was monitored. In 50 mm -potassium concentration, the pre- and postsynaptic potentials were completely suppressed and effluxes of total 14C and [14C]glutamate increased. No significant increase in [14C]glutamine was found. When Ca2+ concentration was reduced from 2·4 to 0·12 mm , the postsynaptic potential disappeared and release of [14C]glutamate in 50 mm -potassium decreased to about a third of that in 2·4 mm -Ca2+. Repetitive LOT stimulation enhanced release of total 14C in thinner slices but caused no significant increase in [14C]glutamate efflux. These findings were discussed in relation to the possibility that glutamate is a mediator between the LOT fibres and cortical neurons.  相似文献   

9.
Olfactory bulb (OB) projection neurons receive sensory input from olfactory receptor neurons and precisely relay it through their axons to the olfactory cortex. Thus, olfactory bulb axonal tracts play an important role in relaying information to the higher order of olfactory structures in the brain. Several classes of axon guidance molecules influence the pathfinding of the olfactory bulb axons. Draxin, a recently identified novel class of repulsive axon guidance protein, is essential for the formation of forebrain commissures and can mediate repulsion of diverse classes of neurons from chickens and mice. In this study, we have investigated the draxin expression pattern in the mouse telencephalon and its guidance functions for OB axonal projection to the telencephalon. We have found that draxin is expressed in the neocortex and septum at E13 and E17.5 when OB projection neurons form the lateral olfactory tract (LOT) rostrocaudally along the ventrolateral side of the telencephalon. Draxin inhibits axonal outgrowth from olfactory bulb explants in vitro and draxin-binding activity in the LOT axons in vivo is detected. The LOT develops normally in draxin−/− mice despite subtle defasciculation in the tract of these mutants. These results suggest that draxin functions as an inhibitory guidance cue for OB axons and indicate its contribution to the formation of the LOT.  相似文献   

10.
In the olfactory system of vertebrates, a large number of primary sensory neurons terminate in glomeruli in the olfactory bulb, where they make synapses with a significantly smaller number of secondary neurons. We applied small amounts of a lipophilic neural tracer (Dil) in the glomerular regions of the lateral olfactory bulb in crucian carp, and investigated the centrifugal migration of this stain through the secondary neurons towards the brain and peripherally to the sensory neurons of the olfactory epithelium. In preparations where only the secondary neurons of the lateral olfactory tract (LOT) were stained, the majority (76%) of sensory neurons had cell bodies in the intermediate layer of the olfactory epithelium. Scanning electron microscopy revealed that most of the sensory neurons with cell bodies in the intermediate layers of the olfactory epithelium feature microvilli. Based on observations that the secondary neurons of the LOT mediate feeding behaviour, we feel that there is strong evidence to indicate that the sensory neurons that exhibit microvilli are responsible for mediating the behavioural patterns related to feeding. These results are discussed in relation to physiological experiments on the properties of the sensory neurons and to studies of the innervation pattern of sensory neurons.  相似文献   

11.
To examine the functional subdivision of the teleost olfactory bulb, extracellular recordings were made from the posterior part of the medial region of the olfactory bulb in the crucian carp, Carassius carassius. Bulbar units classified as type I or type II were frequently and simultaneously encountered at a recording site. Type I units displayed a diphasic action potential (AP) with a relatively small amplitude, a short duration (rise time approximately 1 ms) and high spontaneous activity (2.5 per s). Type II units exhibited an AP with a rise time of approximately 1.8 ms and low spontaneous activity (1.5 per s). The AP of this latter unit was nearly always followed by a slow potential, a characteristic diphasic wave with a rise time of approximately 5 ms. Chemical stimulation of the olfactory organ with a graded series of conspecific skin extract induced an increased firing of the type I units. During the period of increased activity of the type I units, the activity of the type II units was suppressed. Stimulation with nucleotides, amino acids and taurolithocholic acid did not induce firing of the type I units of the posterior part of the medial region of the olfactory bulb. These results indicate that the posterior part of the medial region of the olfactory bulb is both sensitive to and selective for skin extract from conspecifics, which has been shown to be a potent stimulus inducing alarm behaviour. The results of the present study indicate that recording single unit activity from a particular region of the olfactory bulb is a suitable method for isolating pheromones or other chemical signals that induce specific activity in the olfactory system. The projection of the neurons categorized as type II was determined by antidromic activation of their axons by electrical stimulation applied to the medial bundle of the medial olfactory tract. The anatomical basis of the type I and type II units in the fish olfactory bulb is discussed.  相似文献   

12.
Experiments were performed to investigate senses that are essential for mediating fright reaction and food behavior in Pseudoplatystoma corruscans, pintado. The dilemma “to feed or to flee” was also analyzed in fishes with intact and sectioned olfactory tracts, stimulated by alarm substance extracts and food. Fishes were arranged into five groups: fish with intact lateral olfactory tracts (LOT), fish with intact medial olfactory tract (MOT), fish with tracts totally sectioned (TOTAL, both LOT and MOT), sham operated, and nonoperated fish. The five groups were submitted to either alarm substance extract and food stimulus or to distilled water (control) and food stimulus. Fish reacted to food independently of which tract (LOT, MOT or TOTAL) was sectioned; vision seems necessary and elemental to detect and deflagrate food response. Latency of the responses to each reaction was different between groups. None of the fish with sectioned tracts reacted to alarm substance extract, while sham- and nonoperated fish showed the typical alarm behavior response, leading to the conclusion that olfaction is essential for mediating alarm response. These results indicate that others sense systems (e.g., vision) are sufficient to trigger and elicit feeding behavior and that olfaction is not necessary to fully maintain food detection to qualitative and quantitative extent. However, olfactory tract integrity seems to be required for mediation of alarm reaction in P. corruscans.  相似文献   

13.
Experiments were performed to investigate which bundle of the olfactory tract was essential for mediating feeding behaviour in crucian carp. Fish were divided in three groups: control fish, fish with only the lateral olfactory tracts (LOTs) intact and fish with the LOTs cut. The fish were maintained in physiological saline after surgery to preserve the remaining tracts and postoperative inspections revealed the functional status of the remaining tracts. With the injection of food odour into the aquaria the scores for various feeding behaviours--biting, snapping, mouth openings and vertical posture--were not significantly different between those of the control fish and the fish with the LOT intact. Those fish that had the LOT cut but the medial and lateral parts of the medial olfactory tract (mMOT, lMOT) intact had significantly lower feeding-related scores than the other two groups of fish. The results of the present study indicate that the LOT is necessary to maintain the full qualitative and quantitative extent of feeding behaviour in crucian carp.  相似文献   

14.
During development, mitral cell axons, the major efferents of the olfactory bulb, exhibit a protracted waiting period in the lateral olfactory tract (LOT) before giving off collateral branches and innervating the target olfactory cortex. To investigate the target invasion mechanism, a series of heterochronic and heterotopic cocultures of olfactory bulbs with various olfactory cortical strips were conducted. These experiments indicated that development of collateral branches is triggered by environmental cues but not by intrinsic mechanisms in mitral cells. The collateral-inducing cues are apparently different from the cues directing outgrowth of primary mitral cell axons. Coculture experiments also indicated that the target olfactory cortex undergoes a developmental change to become accessible to mitral cell fibers. Primary mitral cell axons, however, still preferred the LOT position over such accessible piriform cortex when encountered both the locations. These results suggest that mitral cell projection comprises multiple steps which are controlled by various environmental cues.  相似文献   

15.
本工作用原位杂交方法研究大鼠嗅球中僧帽细胞(一种CNS神经元)损伤后,B-50(GAP-43)mRNA表达的变化。结果表明外侧嗅束切断,导致约40%的僧帽细胞内B-50mRNA表达显著增高。持续到损伤后10d,在损伤后4周已下降至对照水平。而外侧嗅束切断后,大量僧帽细胞逐渐退化。因此本文工作报道嗅球中部分僧帽细胞,具有应答损伤而致细胞内B-50mRNA上升的能力。但这种反应并不伴随被切断的嗅束的再生。  相似文献   

16.
1. The effects of three metabotropic glutamate receptor (mGluR) agonists were tested in two pathways of rat piriform cortex. The group I, II and III mGluR agonists used were RS-3,5-dihydroxyphenenylglycine (DHPG) (10–100 μM), (2S,1′S,2′S)-2-Carboxycyclopropyl (L-CCG) (20–100 μM) and L(+)-2-amino-4-phosphonobutyric acid (L-AP4) (5–500 μM), respectively.2. The effects of the three groups of agonists on synaptic transmission in the two piriform cortex pathways also were examined. All three agonists reduced the amplitude of the monosynaptic EPSPs generated by stimulation of the lateral olfactory tract (LOT) or of the association fiber pathway (ASSN). This was always accompanied by an increase in paired pulse facilitation.3. Group I and II mGluR agonists had similar synaptic effects on the two pathways, while the group III mGluR agonist suppressed the LOT pathway more than the association pathway.4. The group II and III mGluR agonists had no effect on passive membrane properties of pyramidal neurons. Group I agonists depolarized the pyramidal neuron membrane potential, and enhanced both membrane resistance and noise.5. Our data suggest that all three types of mGluRs modulate synaptic transmission in both of these pathways in piriform cortex. Only group I agonists alter post-synaptic membrane properties, while all three types of receptor regulate synaptic transmission. Groups I and II are equally potent in the LOT and association fiber pathways, while group III receptors are more potent in the LOT than the association fiber pathways.  相似文献   

17.
The olfactory tract in crucian carp (Carassius carassius) is divided into three distinct bundles: the lateral tract (LOT) and the lateral (lMOT) and medial (mMOT) bundles of the medial tract. The LOT has been shown to mediate information associated with feeding behavior, whereas the mMOT mediates information associated with alarm response. The role of the medial olfactory tract (lMOT and mMOT) in reproductive behavior is still under debate. In the present experiment, male reproductive behavior towards prostaglandin-injected females was investigated before and after cutting off the different olfactory tract bundles, to determine which of the tract bundles is essential for mediating reproductive behavior in male crucian carp. The fish were maintained in physiological saline before and after surgery to preserve the remaining tract bundles. Operations were performed symmetrically on both sides and post-operative inspections revealed the functionality of the intact tracts. Sham-operated males and males with only the lMOT intact showed typical reproductive behavior, with following of the female and inspections of the female anal papilla. However, males in which the lMOT was cut, leaving both the mMOT and the LOT intact, showed reduced reproductive behavior. Our results suggest that the lMOT mediates reproductive behavior in male crucian carp.  相似文献   

18.
In the developing nervous system, functional neural networks are constructed with intricate coordination of neuronal migrations and axonal projections. We have previously reported a ventral tangential migration of a special type of cortical neurons, lot cells, in the mouse embryo. These neurons originate from the ventricular zone of the entire neocortex, tangentially migrate in the surface layer of the neocortex into the ventral direction, align in the future pathway of the lateral olfactory tract (LOT) and eventually guide the projection of LOT axons. In this study, we developed an organotypic culture system to investigate the regulation of this cell migration in the developing telencephalon. Our data show that the neocortex contains the signals that direct lot cells ventrally, that the ganglionic eminence excludes lot cells by repelling the migration and that lot cells are attracted to netrin 1, an axon guidance factor. Furthermore, we demonstrate that mutations in the genes encoding netrin 1 and its functional receptor Dcc lead to inappropriate distribution of lot cells and subsequent partial disruption of LOT projection. These results suggest that netrin 1 regulates the migration of lot cells and LOT projections, possibly by ensuring the correct distribution of these guidepost neurons.  相似文献   

19.
Aspartate and glutamate are the principal candidates for the excitatory neurotransmitter released by the lateral olfactory tract (LOT) in prepyriform cortex of the rat. Identity of action of the natural transmitter with exogenous glutamate and/or aspartate, however, has not yet been demonstrated. We show that bath-applied 2-amino-4-phosphonobutyric acid, a presumed specific glutamate antagonist, blocks LOT-stimulated prepyriform field potentials and single unit activity but not the single unit response to ionophoretically applied glutamate or aspartate in rat olfactory cortex slices. These results suggest that neither aspartate nor glutamate is the LOT transmitter. Responses to ionophoretically applied N-methyl-DL-aspartate, kainic acid, and DL-homocysteate were clearly decreased by 2-amino-4-phosphono-butyric acid. This suggests that these agents, usually presumed to be aspartate or glutamate agonists, act at different receptors than aspartate and glutamate.Supported by Armed Forces Radiobiology Research Institute, Defense Nuclear Agency, under Research Work Unit MJ 60203. The views presented in this paper are those of the authors. No endorsement by the Defense Nuclear Agency has been given or should be inferred.  相似文献   

20.
Using cDNA subtraction screening, we identified five Saccharomyces cerevisiae genes whose expressions is up-regulated when culture temperature was down-shifted from 30 to 10 degrees C. Among these LOT (low temperature-responsive) genes, three (LOT1, LOT2, and LOT3) were identical to FBA1, RPL2B, and NOP1, encoding a fructose biphosphate aldolase, a ribosomal protein L2B, and a nucleolar protein for rRNA processing, respectively. No functions were assigned for LOT5 and LOT6, which are identical to YKL183w and YLR011w, respectively. Northern hybridization analysis revealed that these genes are not uniformly regulated in response to the change of growth temperature. In addition, all the LOT genes, except for LOT1/FBA1, were induced by a low concentration of cycloheximide. The data indicate that multiple mechanisms, including translational functionality may be involved in the regulation of LOT gene expression in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号