首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid method for measuring polymerized and depolymerized forms of tubulin in tissues has been developed. The procedure consists of homogenization and centrifugation of the tissue in a microtubule- stabilizing solution and depolymerization of the precipitated microtubules; polymerized and depolymerized forms of tubulin are quantitated by a colchicine-binding assay. The validity of the technique was assessed by electron microscopy and recovery studies with labeled and unlabeled preparations of polymerized and depolymerized forms of rat brain tubulin. The sensitivity of this technique allows quantitation of tubulin in 150 micrograms of tissue, wet weight. The method demonstrated that both the polymerized and depolymerized forms of tubulin were present in rat liver cells, and that in the fed state 31.3 +/-0.7% of the total tubulin pool was in the polymerized form.  相似文献   

2.
To detect changes in the extent of tubulin polymerization in cultured cells, we have developed a radioactive antibody binding assay that can be used to quantitate total cytoskeletal tubulin or specific antigenic subsets of polymerized tubulin. Fibroblastic cells, grown to confluence in multiwell plates, were permeabilized and extracted with 0.5% Triton X-100 in a microtubule-stabilizing buffer. These extracted cytoskeletons were then fixed and incubated with translationally radiolabeled monoclonal antitubulin antibody (Ab 1-1.1), an IgM antibody specific for the beta subunit of tubulin. Specific binding of Ab 1-1.1 to the cytoskeletons was saturable and of a single apparent affinity. All specific binding was blocked by preincubation of the radiolabeled antibody with excess purified brain tubulin. Specific Ab 1-1.1 binding appeared to represent binding to cytoskeletal tubulin inasmuch as: pretreatment of cells with colchicine decreased Ab 1-1.1 binding in a dose-dependent manner which correlated with the amount of polymerized tubulin visualized in parallel cultures by indirect immunofluorescence, taxol pretreatment alone caused an increase in Ab 1-1.1 binding and prevented in a dose-dependent manner the colchicine-induced decrease in antibody binding, in cells pretreated with colcemid and returned to fresh medium, Ab 1-1.1 binding decreased and recovered in parallel with the depolymerization and regrowth of microtubules in these cells, and comparison of maximal antibody binding per cell between primary mouse embryo, 3T3, and human foreskin fibroblasts correlated with immunofluorescence visualization of microtubules in these cells. Thus, this assay can be used to measure relative changes in the level of polymerized cytoskeletal tubulin. Moreover, by Scatchard-type analysis of the binding data it is possible to estimate the total number of antibody binding sites per cell. Therefore, depending on the stoichiometry of antibody binding, this type of assay may be used for quantitating total cytoskeletal tubulin, specific antigenic subsets of cytoskeletal tubulin, or other cytoskeletal proteins.  相似文献   

3.
Rats were made hyperammonemic by feeding them a diet containing ammonium acetate. The tubulin content in their brain increased 30% after 20 days on the diet. All the increase was found in polymerized tubulin; no increase in free tubulin was noted. When rats on the ammonium diet were then fed the standard diet, the tubulin increased slightly on the first day but decreased markedly on the second day, reaching control values on the third day. It should be noted that brain tubulin synthesis, was not reduced on the first day of feeding the standard diet but was markedly inhibited (to 40% of control) on the second day, returning to control values on the third day. On the first day of refeeding there is a remarkable disassembly of microtubules with a large, proportional increase (50%) of free tubulin. Both free and polymerized tubulin levels returned to control values on the third day. These results indicate that in hyperammonemia changes in the degree of polymerization of tubulin preceded those in tubulin synthesis.  相似文献   

4.
Involvement of hepatic microtubules in plasma protein secretion by the liver was investigated by stimulating protein secretion in rat liver and then measuring the different forms of tubulin. Total and free tubulin were estimated in liver supernatants by the [3H] colchicine-binding assay. Polymerized tubulin, assumed to reflect the presence of microtubules, was calculated from the difference between total and free tubulin. To enhance liver plasma protein secretion, an acute inflammatory reaction was induced in one group of rats and a nephrotic syndrome in another. In both cases, total liver tubulin increased significantly compared to normal animals, but free tubulin was unchanged. Accordingly, polymerized tubulin rose by 50% during the inflammatory reaction and by 90% during the nephrotic syndrome. These results support the hypothesis that hepatic microtubules are involved in plasma protein secretion by the liver and also suggest that enhanced secretion requires additional microtubules.  相似文献   

5.
Tubulin has been purified from human blood and tonsil lymphocytes. Using gel filtration, the molecular weight of human lymphocyte tubulin was estimated to be 119 000. The proteins was shown to consist of two subunits, with molecular weights of 61 000 and 58 000 comparable to the α and β polypeptides of human brain tubulin. A partial identity reaction was observed between lymphocyte tubulin and human tubulin when tested by double immunodiffusion against a rabbit anti-human brain tubulin antibody. In the presence of GTP, the purified protein polymerized to form microtubules. Tubulin was localized to the cell's juxtacentriolar region by immunofluorescence and electron microscopy. When assayed by a colchicine-binding assay corrected for time decay, the binding affinity was 1.50 ± 0.86 · 106M?1 and a level in normal lymphocytes of 1.21 · 10?2 ± 0.79 g/g of soluble protein was determined. Since chronic lymphocytic leukemia lymphocytes have an anomalous capping behavior as well as an unusual susceptibility to colchicine toxicity, the properties and levels of tubulin were determined in these cells. Similar values were obtained for the level, decay rate, molecular weight, and Ka for colchicine as for normal lymphocytes. Chronic lymphocytic leukemia lymphocyte tubulin polymerized in a normal fashion. It thus appears that a decrease in the quantity or function of tubulin does not account for these anomalies in the chronic lymphocytic leukemia lymphocyte.  相似文献   

6.
7.
M F Carlier  D Pantaloni 《Biochemistry》1983,22(20):4814-4822
Taxol has been used as a tool to investigate the relationship between microtubule assembly and guanosine 5'-triphosphate (GTP) hydrolysis. The data support the model previously proposed [Carlier, M.-F., & Pantaloni, D. (1981) Biochemistry 20, 1918] that GTP hydrolysis is not tightly coupled to the polymerization process but takes place as a monomolecular process following polymerization. The results further indicate that the energy liberated by GTP hydrolysis is not responsible for the subsequent blockage of GDP on polymerized tubulin. When tubulin is polymerized in the presence of 10-100 microM taxol, the rapid formation of a large number of very short microtubules (l less than 1 micron) is accompanied by the development of turbidity to a lesser extent than what is observed when the same weight amount of longer microtubules (l = 5 microns) is formed. A slower subsequent turbidity increase corresponds to the length redistribution of these short microtubules into 3-5-fold longer ones without any change in the weight amount of polymer. The evolution of the rate of length redistribution with the concentration of taxol suggests a model within which taxol would bind to dimeric tubulin and to tubulin present at the ends of microtubules with a somewhat 10-fold lower affinity than to polymerized tubulin embedded in the bulk of microtubules. In agreement with this model, binding of taxol to the tubulin-colchicine complex in the dimeric form could be measured from the increase in the GTPase activity of the tubulin-colchicine complex accompanying taxol binding.  相似文献   

8.
A sensitive and reproducible method to measure relative levels of polymerized and soluble tubulin in cells has been developed. This method involves metabolically labeling cells with radioactive amino acids followed by lysis in a microtubule-stabilizing buffer, centrifugation to separate soluble from polymerized tubulin, resolution of the proteins in each fraction by two-dimensional gel electrophoresis, and quantitation of the tubulin by liquid scintillation counting of spots excised from the gel. Several buffers were evaluated for their reproducibility and efficacy in preserving the state of in vivo microtubule assembly at the time of cell lysis, and the ability of the technique to measure drug-induced changes in tubulin polymerization was determined. Results using this method indicate that Chinese hamster ovary cells maintain approximately 40% of the cellular tubulin in an assembled form. Dose-dependent decreases in tubulin polymerization could be measured in Colcemid-treated cells, while dose-dependent increases in assembly were measured in taxol-treated cells. The results with taxol indicate that, following the increase in microtubule polymerization, there is a time-dependent bundling of microtubules that occurs without further increases in the extent of tubulin assembly. Examination of drug-resistant Chinese hamster ovary cells reveals that Colcemid-resistant mutants maintain more tubulin in the polymerized state (approximately 50%), while taxol-resistant mutants maintain less assembled tubulin (about 28%). Similar changes occur regardless of whether the mutant cells have an alteration in alpha- or in beta-tubulin. A model to explain these results is discussed.  相似文献   

9.
Native pig brain tubulin in heterodimer or polymer form was subjected to limited proteolysis by subtilisin, which is known to cleave at accessible sites within the last 50 amino acids of the highly variable carboxyl-termini of the alpha and beta subunits. Heterodimeric tubulin or tubulin polymerized in the presence of 4 M glycerol or taxol was used in these experiments. Digested tubulin was purified by cycles of polymerization and depolymerization, ammonium sulfate precipitation, or ion-exchange chromatography in the absence or presence of nonionic detergent; however, smaller cleaved products of about 34,000 to 40,000 MW remained associated with the major cleaved subunits, alpha' and beta', under all purification conditions. In order to determine the effect of subtilisin cleavage on tubulin heterogeneity, purified native or subtilisin-cleaved tubulin was subjected to isoelectric focusing, followed by SDS-PAGE. The total number of isotypes was reduced from 17-22 for native alpha,beta tubulin to 7-9 for subtilisin-cleaved alpha',beta' tubulin. When tubulin heterodimers were cleaved, a single major beta' isotype was evident; however, when tubulin polymerized in 4 M glycerol was cleaved, two major beta' isotypes were found. Monoclonal antibodies that recognize a beta carboxyl-terminal peptide, residues 410-430, reacted with both major beta' isotypes, indicating that subtilisin cleavage occurred within the last 20 of the 450 amino acids. In order to establish whether this difference was in fact associated with polymer or heterodimer forms of tubulin, digestion was carried out in the presence of taxol, which stabilizes tubulin polymers. A single major beta' isotype different from the cleaved heterodimer, but coincident with one of the bands of the cleaved glycerol-induced polymers, was found when taxol-treated tubulin was digested. This result suggests the presence of more than one subtilisin site in the beta subunit, near residues 430-435, with different accessibility to the enzyme in the heterodimer and polymer form.  相似文献   

10.
J Wolff  J Hwang  D L Sackett  L Knipling 《Biochemistry》1992,31(16):3935-3940
Pure rat brain tubulin can be cross-linked by ultraviolet irradiation of tubulin-colchicine complexes at the high-wavelength maximum of colchicine to form covalent dimers greater than trimers greater than tetramers. With colchicine concentrations approximately 3 x 10(-4) M (mole ratio to tubulin 3-12) and irradiation for 5-10 min at 95-109 mW/cm2, the yield of dimers is 11-17% and of trimers is 4-6% of the total tubulin. The oligomers show polydispersity and anomalously high apparent molecular masses that converge toward expected values in low-density gels. Maximal dimer yields are obtained with MTC and the decreasing photosensitizing potency is MTC greater than colchicine greater than colchicide greater than isocolchicine greater than thiocolchicine. Single-ring troponoids also promote dimerization. Evidence is presented suggesting that the initial, low-affinity, binding step of colchicine and its analogues is sufficient to photosensitize tubulin dimerization.  相似文献   

11.
Enhancement of tubulin assembly as monitored by a rapid filtration assay   总被引:1,自引:0,他引:1  
The early kinetics of microtubule formation from lamb brain tubulin isolated by affinity chromatography can be followed by a newly developed filter assay. The rapid collection of microtubules on glass fiber filters permits the calculation of the moles of tubulin polymerized. The filter assay gives both a rate and extent of polymerization that are identical to those obtained by turbidity or sedimentation analysis, respectively. The microtubules trapped by the filter are readily depolymerized by cold (t12= 3 min) and slowly by colchicine (t1/2= 32min). Tubulin purified by affinity chromatography requires a high protein concentration (>4 mg/ml) for polymerization. Although 5m glycerol allows polymerization to occur at tubulin concentrations below 2 mg/ml, the maximum amount of microtubule formation is observed at low tubulin concentration when microtubule-associated proteins are present. These proteins are not retained by the affinity resin; however, they can be eluted from diethylaminoethyl-Sephadex by solutions containing 0.3m KCl. Microtubule-associated proteins enhance both the rate of polymerization and the total amount of tubulin polymerized as assessed by the filter assay, suggesting that they are involved in both initiation and elongation of microtubules.  相似文献   

12.
We have examined the changes in the microtubule and tubulin contents in populations of mouse splenic T lymphocytes stimulated by the mitogen concanavalin A. Indirect immunofluorescence staining with antiserum to tubulin indicated that a more extensive microtubule network was assembled from the centrosome in those cells which had increased in size in response to the mitogen. Direct counts of microtubules from electron micrographs of the centrosome regions of cells showed approximately a 2-fold increase in microtubule number in 48 h stimulated populations and up to a 5-fold increase in the large, fully stimulated, blast cells. Determinations of tubulin and actin contents were made by the measurement of peptides specific to those proteins. As a percentage of total cell protein both of these cytoskeletal proteins increased during the first 24 h of stimulation. Tubulin increased 50% by 24 h and remained high in populations stimulated for 48 h. The tubulin content per cell increased 2.5-fold, from 0.20 to 0.51 μg/106 cells, in the 48 h stimulated population. An increase in tubulin content was also seen following the stimulation of nude mouse B lymphocyte populations and of total splenic lymphocyte populations. Our results show that during lymphocyte stimulation there is a large increase in the numbers of microtubules assembled which is correlated with, and appears dependent on, a similar large increase in the cellular tubulin content.  相似文献   

13.
K Prus  A Mattisson 《Histochemistry》1979,61(3):281-289
Phosphocellulose-purified tubulin (PC tubulin) was analyzed for neutral and amino sugar content, which was found to be 8.3 +/- 0.11 and 0.8 +/- 0.02 mol/mol dimer, respectively. A histochemical-electron-microscopic investigation was undertaken to attempt to localize carbohydrate associated with polymerized microtubules (MT). Outer diameters of MT assembled in vitro from bovine brain MT protein (tubulin and microtubule associated proteins) were found to increase upon treatment with ruthenium red, Alcian blue, and lanthanum hydroxide, which have been reported to possess specificity for complex carbohydrates. Concanavalin A-reactive sites were detected on the surface and in the lumen of MT assembled from MT protein and from PC tubulin.  相似文献   

14.
Tau is a heat-stable microtubule-associated protein which promotes tubulin polymerization. The assembly promoting region of tau was localized using synthetic peptides modeled after domains found in both human and mouse tau. The design of these synthetic peptides was based on the triple repeat motif found in mouse tau. The first peptide, Tau-(187-204), and the second peptide, Tau-(218-235), are capable of promoting the polymerization of tubulin into microtubules, at concentrations above 100 microM. Two other peptides tested, TauR and Tau-(250-267), were not able to promote the assembly of tubulin over a range of concentrations up to 800 microM. TauR is a random analog of Tau-(187-204). Although TauR is unable to promote polymerization, it can modify Tau-(187-204)-induced tubulin assembly.  相似文献   

15.
A search for cellular binding proteins for peptidoglycan (PGN), a CD14- and TLR2-dependent macrophage activator from Gram-positive bacteria, using PGN-affinity chromatography and N-terminal micro-sequencing, revealed that tubulin was a major PGN-binding protein in mouse macrophages. Tubulin also co-eluted with PGN from anti-PGN vancomycin affinity column and bound to PGN coupled to agarose. Tubulin-PGN binding was preferential under the conditions that promote tubulin polymerization, required macromolecular PGN, was competitively inhibited by soluble PGN and tubulin, did not require microtubule-associated proteins, and had an affinity of 100-150 nM. By contrast, binding of tubulin to lipopolysaccharide (LPS) had 2-3 times lower affinity, faster kinetics of binding, and showed positive cooperativity. PGN enhanced tubulin polymerization in the presence of 4 M glycerol, but in the absence of glycerol, both PGN and LPS decreased microtubule polymerization. These results indicate that tubulin is a major PGN-binding protein and that PGN modulates tubulin polymerization.  相似文献   

16.
R P Frigon  S N Timasheff 《Biochemistry》1975,14(21):4559-4566
The self-association of calf brain tubulin at pH 7.0 in the presence of magnesium ions has been examined by velocity sedimentation. The schlieren patterns were analyzed by methods described by Gilbert and by Cox. The observed process is best described in terms of a rapidly reversible progressive self-association of the tubulin dimer with identical chain elongation equilibrium constants, k, terminated by a ring-closing step, at degree of polymerization n = 26 +/- 2, with k26 greater than k. The end product of the polymerization reaction has a sedimentation coefficient s20,w0 k2 +/- 2 S. It is hydrodynamically equivalent to a closed ring structure observed in the electron microscope at identical conditions.  相似文献   

17.
A carboxypeptidase purified from brain catalyzes the release of COOH-terminal tyrosine without further digesting tubulin. It is distinct from previously described carboxypeptidases, and appears to have specificity for tubulin as it is not inhibited by peptides and proteins with COOH-terminal tyrosine, and because, unlike carboxypeptidase A (which by removing tyrosine from aldolase causes its inactivation), this enzyme does not decrease aldolase activity. The enzyme detyrosinolates both self-assembly-competent (cycle-purified) and -incompetent (phosphocellulose-purified) tubulin. However, under assembly conditions the rate was 2-3-fold higher for competent tubulin. Preincubation of assembly-competent tubulin with podophyllotoxin or colchicine resulted in a parallel concentration-dependent inhibition of tubulin polymerization and detyrosinolation. Similarly, when incompetent tubulin was induced to polymerize by preincubation with purified microtubule-associated protein 2 (an assembly-promoting protein) or taxol, the initial rate of its detyrosinolation increased 3-5-fold, and this increase was blocked if podophyllotoxin was also added along with microtubule-associated protein 2 or taxol during the preincubation. Oligomers induced by adding vinblastine to incompetent tubulin were also detyrosinolated more rapidly, and the stimulation was abolished by maytansine, which has been shown to disperse the vinblastine-induced oligomers. When polymerized and subunit fractions were separated after a steady state mixture had been partially digested with the carboxypeptidase, the former was found to have lost 2-3 times more COOH-terminal tyrosine. Although both polymer and monomer can be detyrosinolated by the enzyme, polymeric and oligomeric forms are the preferred substrates. Carboxypeptidase appeared to release tyrosine at the same rate from populations of short and long microtubules.  相似文献   

18.
The soluble tubulin of human cerebral cortex, as assessed by [3H]colchicine binding of the 100,000g supernatant fraction, decreases drastically with age, 75 percent from age 0 to age 90. There is also a considerably lower concentration of high molecular weight proteins in the soluble fraction of postmortem human cerebral cortex than in that of nonhuman species. Human brain tubulin can be polymerized into microtubules with DEAE-dextran. The DEAE-dextran induced microtubules are stable to cold temperature (4°) and calcium. However, in the presence of 1 M glutamate, the microtubules become cold labile and depolymerize at 4°. Thus we have developed a novel method for purifying polymerization competent tubulin from fresh or frozen human cerebral cortex. Human brain tubulin purified by our novel method is very similar to tubulin from the brains of other mammals in molecular weight, amino acid composition, polymerization-depolymerization parameters, and structural dimensions of the microtubules formed.Some aspects of this work have been published as an abstract in 1981. Fed. Proc. 40:1548.  相似文献   

19.
Clonal cell lines N18 and N103 of the mouse neuroblastoma C1300 possess an undifferentiated neuroblast morphology under optimal growth conditions; however, when deprived of serum, N18 can be induced to extend long neurites. Although initial neurite outgrowth is rapid, very long fibers are found only after several days. Both initial outgrowths and established neurites contain microtubules; however, the number and density of these polymerized tubules increase markedly during this time. Optimum conditions have been established for assessing the colchicine-binding activity of neuroblastoma sonicates. A time-decay colchicine-binding assay was used to make a comparative study of the tubulin content of both undifferentiated and differentiated N18 as well as the nondifferentiating N103 and the rat glioma C6. Both morphologies of clone N18 possessed similar concentrations of tubulin (130-140 pmol/10(6) cells). Although cells of clone N103 contain 20% less tubulin than N18 cells, this is considerably more tubulin than is present in the glioma C6 (30 pmol/10(6) cells) which has a similar generation time. Quantitative densitometry of neuroblastoma extracts electrophoresed on SDS-polyacrylamide gels confirmed the constancy of tubulin. Radiolabeled proteins from neuroblastoma cells subjected to both growth conditions show that neurite outgrowth does not create a disproportionate demand for tubulin synthesis. Thus, the morphological differentiation of neuroblastoma cells probably reflects the regulation of tubulin storage and microtubule polymerization.  相似文献   

20.
Pure rat brain tubulin is readily palmitoylated in vitro using [3H]palmitoyl CoA but no added enzymes. A maximum of approximately six palmitic acids are added per dimer in 2-3 h at 36-37 degrees C under native conditions. Both alpha and beta tubulin are labeled, and 63-73% of the label was hydroxylamine-labile, presumed thioesters. Labeling increases with increasing pH and temperature, and with low concentrations of guanidine HCl or KCl (but not with urea) to a maximum of approximately 13 palmitates/dimer. High SDS and guanidine HCl concentrations are inhibitory. At no time could all 20 cysteine residues of the dimer be palmitoylated. Polymerization to microtubules, or use of tubulin S, markedly decreases the accessibility of the palmitoylation sites. Palmitoylation increases the electrophoretic mobility of a portion of alpha tubulin toward the beta band. Palmitoylated tubulin binds a colchicine analogue normally, but during three warm/cold polymerization/depolymerization cycles there is a progressive loss of palmitoylated tubulin, indicating decreased polymerization competence. We postulate that local electrostatic factors are major regulators of reactivity of tubulin cysteine residues toward palmitoyl CoA, and that the negative charges surrounding a number of the cysteines are sensitive to negative charges on palmitoyl CoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号