首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the role of cysteine proteinases in the pathogenicity of Entamoeba histolytica , we have attempted to overexpress the three main cysteine proteinases (EhCP1, EhCP2, EhCP5) of this parasite in trophozoites of E. histolytica as well as in non-pathogenic Entamoeba dispar by episomal transfection. Although each of the corresponding coding sequences were cloned in identical expression plasmids, we were unable to overexpress EhCP1 and EhCP5, respectively, but could substantially induce expression of EhCP2 in both amoeba species by sevenfold, leading to a threefold increase in total cysteine proteinase activity. Overexpression of EhCP2 did not influence expression of other cysteine proteinases and could be attributed to an increase of a single 35 kDa activity band in substrate gel electrophoresis. In contrast to previous findings, which indicated that amoeba cysteine proteinases are involved in erythrophagocytosis and liver abscess formation, cells overexpressing EhCP2 showed no difference in erythrophagocytosis or liver abscess formation compared with respective controls. However, overexpression of EhCP2 in both amoeba species resulted in a marked increase of in vitro monolayer destruction.  相似文献   

2.
Cysteine proteinases are key virulence factors of Entamoeba histolytica that are released during the process of invasion. We used a chemical mutant of E. histolytica strain HM-1:IMSS, clone L6, which is deficient in virulence, phagocytosis, and cysteine proteinase activity to help define the mechanisms of cysteine proteinase release. All cysteine proteinase genes of wild type HM-1 were present in the L6 mutant genome, but three of the major expressed proteinases, ehcp1, ehcp2, and ehcp5 were both transcribed, translated, and released at lower levels in L6. We hypothesized that a central protein such as the calcium binding protein 1, EhCaBP1, which is required for both phagocytosis and exocytosis might be deficient in this mutant. We found that both mRNA and proteinase levels of EhCaBP1 were decreased in L6. These findings provide an important link between phagocytosis, passive release of multiple cysteine proteinases, and attenuated virulence of this E. histolytica mutant.  相似文献   

3.
The cysteine proteinase EhCP112 and the adhesin EhADH112 assemble to form the EhCPADH complex involved in Entamoeba histolytica virulence. To further characterize this cysteine proteinase, the recombinant full-length EhCP112 enzyme was expressed and purified under denaturing conditions. After a refolding step under reductive conditions, the inactive precursor (ppEhCP112) was processed to a 35.5 kDa mature and active enzyme (EhCP112). The thiol specific inhibitor E-64, but not serine or aspartic proteinase inhibitors arrested this activation process. The activation step of the proenzyme followed by the mature enzyme suggests an autocatalytic process during EhCP112 maturation. The experimentally determined processing sites observed during EhCP112 activation lie close to processing sites of other cysteine proteinases from parasites. The kinetic parameters of the mature EhCP112 were determined using hemoglobin and azocasein as substrates. The proteinase activity of EhCP112 was completely inhibited by thiol inhibitors, E-64, TLCK, and chymostatin, but not by general proteinase inhibitors. Since EhCP112 is a proteinase involved in the virulence of E. histolytica, a reliable source of active EhCP112 is a key step for its biochemical characterization and to carry out future protein structure-function studies.  相似文献   

4.
5.
Cysteine proteinases and in particular cysteine proteinase 5 (EhCP5) of Entamoeba histolytica are considered important for ameba pathogenicity. To study EhCP5 in more detail a protocol was elaborated to produce considerable amounts of the enzyme in its active form. The protein was expressed in Escherichia coli as a histidine-tagged pro-enzyme and purified to homogeneity under denaturing conditions in the presence of guanidine-HCl using nickel affinity chromatography. Renaturation was performed by 100-fold dilution in a buffer containing reduced and oxidized thiols, which led to soluble but enzymatically inactive pro-enzyme. Further processing and activation was achieved in the presence of 10 mM DTT and 0.04% SDS at 37 degrees C. Recombinant enzyme (rEhCP5) was indistinguishable from native EhCP5 purified from E. histolytica lysates. Both runs in SDS-PAGE under reducing and nonreducing conditions at positions corresponding to 27 and 29 kDa, respectively, had the same pH optima and displayed similar specific activity against azocasein. Moreover, both enzymes were active against a broad spectrum of biological and synthetic substrates such as mucin, fibrinogen, collagen, human hemoglobin, bovine serum albumin, gelatin, human IgG, Z-Arg-Arg-pNA, and Z-Ala-Arg-Arg-pNA, but not against Z-Phe-Arg-pNA. The identity of rEhCP5 as a cysteine proteinase was confirmed by inhibition with specific cysteine proteinase inhibitors. In contrast, various compounds known to specifically inhibit aspartic, metallo, or serine proteinases had no effect on rEhCP5 activity.  相似文献   

6.
7.
Entamoeba histolytica cysteine proteinases (EhCPs) play a key role in disrupting the colonic epithelial barrier and the innate host immune response during invasion of E. histolytica, the protozoan cause of human amebiasis. EhCPs are encoded by 50 genes, of which ehcp4 (ehcp-a4) is the most up-regulated during invasion and colonization in a mouse cecal model of amebiasis. Up-regulation of ehcp4 in vivo correlated with our finding that co-culture of E. histolytica trophozoites with mucin-producing T84 cells increased ehcp4 expression up to 6-fold. We have expressed recombinant EhCP4, which was autocatalytically activated at acidic pH but had highest proteolytic activity at neutral pH. In contrast to the other amebic cysteine proteinases characterized so far, which have a preference for arginine in the P2 position, EhCP4 displayed a unique preference for valine and isoleucine at P2. This preference was confirmed by homology modeling, which revealed a shallow, hydrophobic S2 pocket. Endogenous EhCP4 localized to cytoplasmic vesicles, the nuclear region, and perinuclear endoplasmic reticulum (ER). Following co-culture with colonic cells, EhCP4 appeared in acidic vesicles and was released extracellularly. A specific vinyl sulfone inhibitor, WRR605, synthesized based on the substrate specificity of EhCP4, inhibited the recombinant enzyme in vitro and significantly reduced parasite burden and inflammation in the mouse cecal model. The unique expression pattern, localization, and biochemical properties of EhCP4 could be exploited as a potential target for drug design.  相似文献   

8.
Cysteine proteinases are key virulence factors of the protozoan parasite Entamoeba histolytica. We have shown that cysteine proteinases play a central role in tissue invasion and disruption of host defenses by digesting components of the extracellular matrix, immunoglobulins, complement, and cytokines. Analysis of the E. histolytica genome project has revealed more than 40 genes encoding cysteine proteinases. We have focused on E. histolytica cysteine proteinase 1 (EhCP1) because it is one of two cysteine proteinases unique to invasive E. histolytica and is highly expressed and released. Recombinant EhCP1 was expressed in Escherichia coli and refolded to an active enzyme with a pH optimum of 6.0. We used positional-scanning synthetic tetrapeptide combinatorial libraries to map the specificity of the P1 to P4 subsites of the active site cleft. Arginine was strongly preferred at P2, an unusual specificity among clan CA proteinases. A new vinyl sulfone inhibitor, WRR483, was synthesized based on this specificity to target EhCP1. Recombinant EhCP1 cleaved key components of the host immune system, C3, immunoglobulin G, and pro-interleukin-18, in a time- and dose-dependent manner. EhCP1 localized to large cytoplasmic vesicles, distinct from the sites of other proteinases. To gain insight into the role of secreted cysteine proteinases in amebic invasion, we tested the effect of the vinyl sulfone cysteine proteinase inhibitors K11777 and WRR483 on invasion of human colonic xenografts. The resultant dramatic inhibition of invasion by both inhibitors in this human colonic model of amebiasis strongly suggests a significant role of secreted amebic proteinases, such as EhCP1, in the pathogenesis of amebiasis.  相似文献   

9.
A cDNA clone derived from the gene encoding a cysteine proteinase of pathogenic Entamoeba histolytica was isolated using an antiserum to the purified enzyme. This clone was used to identify the homologous clone in a cDNA library from nonpathogenic E. histolytica. Sequence analysis and comparison of the predicted amino acid sequences revealed a sequence divergence of 16%. Southern blot analyses indicated that (i) pathogenic isolates may contain more genes coding for these or related enzymes than nonpathogenic isolates, (ii) the structure and organization of these genes are conserved within each group of amoebae, and (iii) none of the genes is found in both pathogenic and nonpathogenic E. histolytica, underlining the notion that the two groups are genetically distinct. Northern blot analyses suggested that the cysteine proteinase is expressed by pathogenic isolates in substantially higher amounts than by nonpathogenic isolates. Overexpression of this enzyme may be an important factor in the pathogenicity of E. histolytica.  相似文献   

10.
Major pathogenic functions of Entamoeba histolytica involved in destruction of host tissues are the degradation of extracellular matrix proteins mediated by secreted cysteine proteinases and contact-dependent killing of host cells via membrane-active factors. A soluble protein with an affinity for membranes was purified from amoebic extracts to apparent homogeneity. N-terminal sequencing and subsequent molecular cloning of the factor revealed that it is a member of the cysteine proteinase family of E. histolytica , which we termed CP5. Further experiments with the purified protein showed that it has potent proteolytic activity that is abrogated in the presence of inhibitors specific for cysteine proteinases. The enzyme firmly associates with membranes retaining its proteolytic activity and it produces cytopathic effects on cultured monolayers. A model of the three-dimensional structure of CP5 revealed the presence of a hydrophobic patch that may account for the potential of the protein to associate with membranes. Immunocytochemical localization of the enzyme to the surface of the amoeba in combination with the recent finding that the gene encoding CP5 is missing in the closely related but non-pathogenic Entamoeba dispar suggests a potential role of the protein in host tissue destruction of E. histolytica .  相似文献   

11.
Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereas EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight β-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.  相似文献   

12.
13.
Variable phenotypes have been identified for Entamoeba species. Entamoeba histolytica is invasive and causes colitis and liver abscesses but only in approximately 10% of infected individuals; 90% remain asymptomatically colonized. Entamoeba dispar, a closely related species, is avirulent. To determine the extent of genetic diversity among Entamoeba isolates and potential genotype-phenotype correlations, we have developed an E. histolytica genomic DNA microarray and used it to genotype strains of E. histolytica and E. dispar. On the basis of the identification of divergent genetic loci, all strains had unique genetic fingerprints. Comparison of divergent genetic regions allowed us to distinguish between E. histolytica and E. dispar, identify novel genetic regions usable for strain and species typing, and identify a number of genes restricted to virulent strains. Among the four E. histolytica strains, a strain with attenuated virulence was the most divergent and phylogenetically distinct strain, raising the intriguing possibility that genetic subtypes of E. histolytica may be partially responsible for the observed variability in clinical outcomes. This microarray-based genotyping assay can readily be applied to the study of E. histolytica clinical isolates to determine genetic diversity and potential genotypic-phenotypic associations.  相似文献   

14.
Cysteine proteinases 112 (EhCP112) of Entamoeba histolytica are considered important for ameba pathogenicity. The recombinant gene was obtained by cloning and expression of the EhCP112 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in minipig against challenge infection in a minipig-E. histolytica model. There was a 46.29% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-EhCP112 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.001). This is a first report demonstrating that a recombinant form of EhCP112 generated in E. coli, to immunize a minipig model of E. histolytica, and there is significant protection. This study may help to understand the EhCP112 for human in the future.  相似文献   

15.
Cysteine proteinases 4 (EhCP4) of Entamoeba histolytica are considered important for ameba pathogenicity. The recombinant gene was obtained by cloning and expression of the EhCP4 gene in heterologous host Escherichia coli BL-21 (DE3), were used to evaluate their ability to induce immune protective responses in minipig against challenge infection in a minipig-E. histolytica model. There was a 53.16% reduction (P<0.001) in the group of recovery of challenged E. histolytica compared with that in the control group. Specific anti-EhCP4 antibodies from immune protected minipig had significantly higher levels of immunoglobulin G (IgG) (P<0.001). This is a first report demonstrating that a recombinant form of EhCP4 generated in E. coli, to immunize a minipig model of E. histolytica, and there is significant protection. This study may help to understand the EhCP4 for human in the future.  相似文献   

16.
Entameoba histolytica, 1 of the 2 Entamoeba species with similar morphology that infect humans, causes invasive intestinal and extraintestinal diseases, whereas Entamoeba dispar is found commensally and is noninvasive. Because of their morphologic similarity, E. histolytica and E. dispar cannot be differentiated microscopically. The antigens of E. histolytica and E. dispar, however, may be detected by the ELISA method. Previous studies have found that the detection of antigens in the stool is as sensitive and specific as cultures and isoenzyme analyses. Stool samples from 272 patients with diarrhea in the province of Mersin, Turkey, were examined for the presence of Entamoeba species microscopically and for Entamoeba (E. histolytica/E. dispar) antigens using the ELISA method. An E. histolytica-specific ELISA test was used to examine 29 E. histolytica/E. disparpositive samples. Twenty-four (8.82%) of the samples tested positive for E. histolytica/E. dispar by trichrome staining, and 29 (10.6%) of the samples tested positive for E. histolytica/E. dispar by the Entamoeba screening test. Entamoeba histolytica was positive in 21 (7.72%) and E. dispar positive in 8 (2.94%) samples. The detection of true E. histolytica infection is possible with the use of E. histolytica-specific antigen ELISA tests. Thus, real cases of amoebiasis can be detected and treated, and overtreatment of the patients with E. dispar, which is the nonpathogenic species, will be prevented.  相似文献   

17.
18.
The frequency of Entamoeba histolytica and Entamoeba dispar infection was analyzed in a rural community in the state of Morelos, Mexico, through PCR technique by using specie specific primer. The E. histolytica specie was detected in 33 of 290 analyzed stool samples (11.4%), E. dispar specie was observed in 21 samples (7.2%) and both species of Entamoeba were detected in seven samples (2.4%). So a higher E. histolytica than E. dispar frequency infection was detected (13.8 versus 9.6%). Even though in our design we did not considered the follow-up of included individuals, the absence of invasive amebiasis cases in the studied population during our stay in town was unexpected.  相似文献   

19.
The causative agent of amoebiasis is currently attributed to two distinct species (E. histolytica and E. dispar). The aim of this study was to differentiate these species by PCR in stool samples. Isolated genomic DNA was amplified by PCR and band products of 101 bp (E. dispar) were obtained. All seven stool samples were found to be E. dispar, not E. histolytica. Our results demonstrated the significance of E. histolytica/dispar differentiation in the diagnosis of amoebiasis. This study is preliminary to our current research project entitled "Investigation of the prevalence of amoebiasis and Entamoeba species in Izmir and its hinterland".  相似文献   

20.
The objective of this work was to evaluate the frequency of Entamoeba histolytica/Entamoeba dispar intestinal infection in HIV+/AIDS subjects and their HIV- close relatives or sexual partners. Enteric parasites were investigated in stool samples by microscopic examination and E. histolytica and E. dispar were identified by PCR. We found by microscopic analysis in HIV+/AIDS group that the E. histolytica/E. dispar complex was present in 5.9% of the members, while in the HIV- group was 2.9%. With PCR we found that the E. histolytica prevalence was 25.3% in the HIV+/AIDS group and 18.5% in the HIV-group. The difference in the results obtained with the microscopic and PCR is due to the different sensibility of the procedures. Besides, we found patients who were infected with E. histolytica in both groups were asymptomatic cyst passers. Our results suggest that E. histolytica strains prevalent in the studied community appear to be of low pathogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号