首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological activity of siRNA seems to be influenced by local characteristics of the target RNA, including local RNA folding. Here, we investigated quantitatively the relationship between local target accessibility and the extent of inhibition of the target gene by siRNA. Target accessibility was assessed by a computational approach that had been shown earlier to be consistent with experimental probing of target RNA. Two sites of ICAM-1 mRNA predicted to serve as accessible motifs and one site predicted to adopt an inaccessible structure were chosen to test siRNA constructs for suppression of ICAM-1 gene expression in ECV304 cells. The local target-dependent effectiveness of siRNA was compared with antisense oligonucleotides (asON). The concentration dependency of siRNA-mediated suppression indicates a >1000-fold difference between active siRNAs (IC50 ≈ 0.2–0.5 nM) versus an inactive siRNA (IC50 ≥ 1 µM) which is consistent with the activity pattern of asON when relating target suppression to predicted local target accessibility. The extremely high activity of the siRNA si2B (IC50 = 0.24 nM) indicates that not all siRNAs shown to be active at the usual concentrations of >10–100 nM belong to this highly active species. The observations described here suggest an option to assess target accessibility for siRNA and, thus, support the design of active siRNA constructs. This approach can be automated, work at high throughput and is open to include additional parameters relevant to the biological activity of siRNA.  相似文献   

2.
A Nyk?nen  B Haley  P D Zamore 《Cell》2001,107(3):309-321
We examined the role of ATP in the RNA interference (RNAi) pathway. Our data reveal two ATP-dependent steps and suggest that the RNAi reaction comprises at least four sequential steps: ATP-dependent processing of double-stranded RNA into small interfering RNAs (siRNAs), incorporation of siRNAs into an inactive approximately 360 kDa protein/RNA complex, ATP-dependent unwinding of the siRNA duplex to generate an active complex, and ATP-independent recognition and cleavage of the RNA target. Furthermore, ATP is used to maintain 5' phosphates on siRNAs. A 5' phosphate on the target-complementary strand of the siRNA duplex is required for siRNA function, suggesting that cells check the authenticity of siRNAs and license only bona fide siRNAs to direct target RNA destruction.  相似文献   

3.
RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not processed by Dicer. Instead, this miRNA is processed by the Argonaute 2 (Ago2) protein, which also executes the subsequent cleavage of a complementary mRNA target. Interestingly, shRNAs that structurally resemble miR-451 can also be processed by Ago2 instead of Dicer. The key determinant of these “AgoshRNA” molecules is a relatively short basepaired stem, which avoids Dicer recognition and consequently allows alternative processing by Ago2. AgoshRNA processing yields a single active RNA strand, whereas standard shRNAs produce a duplex with guide and passenger strands and the latter may cause adverse off-target effects. In this study, we converted previously tested active anti-HIV-1 shRNA molecules into AgoshRNA. We tested several designs that could potentially improve AgoshRNA activity, including extension of the complementarity between the guide strand and the mRNA target and reduction of the thermodynamic stability of the hairpins. We demonstrate that active AgoshRNAs can be generated. However, the RNAi activity is reduced compared to the matching shRNAs. Despite reduced RNAi activity, comparison of an active AgoshRNA and the matching shRNA in a sensitive cell toxicity assay revealed that the AgoshRNA is much less toxic.  相似文献   

4.
Tumor necrosis factor (TNF) initiates local inflammation by triggering endothelial cells (EC) to express adhesion molecules for leukocytes such as intercellular adhesion molecule-1 (ICAM-1 or CD54). A prior study identified siRNA molecules that reduce ICAM-1 expression in cultured human umbilical vein EC (HUVEC). One of these, ISIS 121736, unexpectedly inhibits TNF-mediated up-regulation of additional molecules on EC, including E-selectin (CD62E), VCAM-1 (CD106) and HLA-A,B,C. 736 siRNA transfection was not toxic for EC nor was there any evidence of an interferon response. 736 Transfection of EC blocked multiple early TNF-related signaling events, including activation of NF-κB. IL-1 activation of these same pathways was not inhibited. A unifying explanation is that 736 siRNA specifically reduced expression of mRNA encoding tumor necrosis factor receptor 1 (TNFR1) as well as TNFR1 surface expression. A sequence with high identity to the 736 antisense strand (17 of 19 bases) is present within the 3′UTR of human TNFR1 mRNA. An EGFP construct incorporating the 3′UTR of TNFR1 was silenced by 736 siRNA and this effect was lost by mutagenesis of this complementary sequence. Chemical modification and mismatches within the sense strand of 736 also inhibited silencing activity. In summary, an siRNA molecule selected to target ICAM-1 through its antisense strand exhibited broad anti-TNF activities. We show that this off-target effect is mediated by siRNA knockdown of TNFR1 via its sense strand. This may be the first example in which the off-target effect of an siRNA is actually responsible for the anticipated effect by acting to reduce expression of a protein (TNFR1) that normally regulates expression of the intended target (ICAM-1).  相似文献   

5.
The efficiency with which small interfering RNAs (siRNAs) down-regulate specific gene expression in living cells is variable and a number of sequence-governed, biochemical parameters of the siRNA duplex have been proposed for the design of an efficient siRNA. Some of these parameters have been clearly identified to influence the assembly of the RNA-induced silencing complex (RISC), or to favour the sequence preferences of the RISC endonuclease. For other parameters, it is difficult to ascertain whether the influence is a determinant of the siRNA per se, or a determinant of the target RNA, especially its local structural characteristics. In order to gain an insight into the effects of local target structure on the biological activity of siRNA, we have used large sets of siRNAs directed against local targets of the mRNAs of ICAM-1 and survivin. Target structures were classified as accessible or inaccessible using an original, iterative computational approach and by experimental RNase H mapping. The effectiveness of siRNA was characterized by measuring the IC50 values in cell culture and the maximal extent of target suppression. Mean IC50 values were tenfold lower for accessible local target sites, with respect to inaccessible ones. Mean maximal target suppression was improved. These data illustrate that local target structure does, indeed, influence the activity of siRNA. We suggest that local target screening can significantly improve the hit rate in the design of biologically active siRNAs.  相似文献   

6.
Short interfering RNA (siRNA) is used in RNA interference technology to avoid non-target-related induction of type I interferon (IFN) typical for long double-stranded RNA. Here we show that in plasmacytoid dendritic cells (PDC), an immune cell subset specialized in the detection of viral nucleic acids and production of type I IFN, some siRNA sequences, independent of their GU content, are potent stimuli of IFN-alpha production. Localization of the immunostimulatory motif on the sense strand of a potent IFN-alpha-inducing siRNA allowed dissection of immunostimulation and target silencing. Injection into mice of immunostimulatory siRNA, when complexed with cationic liposomes, induced systemic immune responses in the same range as the TLR9 ligand CpG, including IFN-alpha in serum and activation of T cells and dendritic cells in spleen. Immunostimulation by siRNA was absent in TLR7-deficient mice. Thus sequence-specific TLR7-dependent immune recognition in PDC needs to be considered as an additional biological activity of siRNA, which then should be termed immunostimulatory RNA (isRNA).  相似文献   

7.
Gupta P  Muse O  Rozners E 《Biochemistry》2012,51(1):63-73
Double-helical RNA has become an attractive target for molecular recognition because many noncoding RNAs play important roles in the control of gene expression. Recently, we discovered that short peptide nucleic acids (PNA) bind strongly and sequence selectively to a homopurine tract of double-helical RNA via formation of a triple helix. Herein, we tested if the molecular recognition of RNA could be enhanced by α-guanidine modification of PNA. Our study was motivated by the discovery of Ly and co-workers that the guanidine modification greatly enhances the cellular delivery of PNA. Isothermal titration calorimetry showed that the guanidine-modified PNA (GPNA) had reduced affinity and sequence selectivity for triple-helical recognition of RNA. The data suggested that in contrast to unmodified PNA, which formed a 1:1 PNA-RNA triple helix, GPNA preferred a 2:1 GPNA-RNA triplex invasion complex. Nevertheless, promising results were obtained for recognition of biologically relevant double-helical RNA. Consistent with enhanced strand invasion ability, GPNA derived from d-arginine recognized the transactivation response element of HIV-1 with high affinity and sequence selectivity, presumably via Watson-Crick duplex formation. On the other hand, strong and sequence selective triple helices were formed by unmodified and nucelobase-modified PNA and the purine-rich strand of the bacterial A-site. These results suggest that appropriate chemical modifications of PNA may enhance molecular recognition of complex noncoding RNAs.  相似文献   

8.
Wu H  Ma H  Ye C  Ramirez D  Chen S  Montoya J  Shankar P  Wang XA  Manjunath N 《PloS one》2011,6(12):e28580
siRNA (small interfering RNA) and shRNA (small hairpin RNA) are powerful and commonly used tools in biomedical research. Currently, siRNAs are generally designed as two 21 nt strands of RNA that include a 19 nt completely complementary part and a 2 nt overhang. However, since the si/shRNAs use the endogenous miRNA machinery for gene silencing and the miRNAs are generally 22 nt in length and contain multiple internal mismatches, we tested if the functionality can be increased by designing the si/shRNAs to mimic a miRNA structure. We systematically investigated the effect of single or multiple mismatches introduced in the passenger strand at different positions on siRNA functionality. Mismatches at certain positions could significantly increase the functionality of siRNAs and also, in some cases decreased the unwanted passenger strand functionality. The same strategy could also be used to design shRNAs. Finally, we showed that both si and miRNA structured oligos (siRNA with or without mismatches in the passenger strand) can repress targets in all individual Ago containing cells, suggesting that the Ago proteins do not differentiate between si/miRNA-based structure for silencing activity.  相似文献   

9.
Gene silencing by RNA interference (RNAi) has proven to be a powerful tool for investigating gene function in mammalian cells. Combination of several short interfering RNA (siRNA) targeting the same gene is commonly used to improve RNA interference. However, in contrary to the well-described mechanism of RNAi, efficiency of single siRNA compared to pool remains poorly documented. We addressed this issue using several active and inactive siRNA targeting Eg5, a kinesin-related motor involved in mitotic spindle assembly. These siRNA, used alone or in combination, were tested for their silencing efficiency in several cancer cell lines. Here we show that presence of inactive Eg5 siRNA in a pool dramatically decreases knockdown efficacy in a cell line- and dose-dependent manner. Lack of inhibition by unrelated siRNA suggests that a competition may occur during siRNA incorporation into RNA-induced silencing complexes (RISCs) along with the target mRNA. Altogether, our results, which need to be confirmed with additional inactive siRNA, indicate that combination of siRNA may not increase but instead decrease silencing efficiency.  相似文献   

10.
RNA interference (RNAi) has become an invaluable tool for functional genomics. A critical use of this tool depends on an understanding of the factors that determine the specificity and activity of the active agent, small interfering RNA (siRNA). Several studies have concluded that tolerance of mutations can be considerable and hence lead to off-target effects. In this study, we have investigated in vivo the toleration of wobble (G:U) mutations in high activity siRNAs against Flap Endonuclease 1 (Fen1) and Aquaporin-4 (Aqp4). Mutations in the central part of the antisense strand caused a pronounced decrease in activity, while mutations in the 5′ and 3′ends were tolerated very well. Furthermore, based on analysis of nine different mutated siRNAs with widely differing intrinsic activities, we conclude that siRNA activity can be significantly enhanced by wobble mutations (relative to mRNA), in the 5′ terminal of the antisense strand. These findings should facilitate design of active siRNAs where the target mRNA offers limited choice of siRNA positions.  相似文献   

11.
Despite the widespread application of RNA interference (RNAi) as a research tool for diverse purposes, the key step of strand selection of siRNAs during the formation of RNA-induced silencing complex (RISC) remains poorly understood. Here, using siRNAs targeted to the complementary region of Survivin and the effector protease receptor 1 (EPR-1), we show that both strands of the siRNA duplex can find their target mRNA and are equally eligible for assembly into Argonaute 2 (Ago2) of RISC in HEK293 cells. Transfection of the synthetic siRNA duplexes with different thermodynamic profiles or short hairpin RNA (shRNA) vectors that generate double-stranded RNAs (dsRNAs), permitting processing specifically from either the 5′ or 3′ end of the incipient siRNA, results in the degradation of the respective target mRNAs of either strand of the siRNA duplex with comparable efficiencies. Thus, while most RNAi reactions may follow the thermodynamic asymmetry rule in strand selection, our study suggests an exceptional mode for certain siRNAs in which both strands of the duplex are competent in sponsoring RNAi, and implies additional factors that might dictate the RNAi targets.  相似文献   

12.
RNA interference is mediated by small interfering RNAs (siRNAs) that upon incorporation into the RNA-induced silencing complex (RISC) can target complementary mRNA for degradation. Standard siRNA design usually feature a 19–27 base pair contiguous double-stranded region that is believed to be important for RISC incorporation. Here, we describe a novel siRNA design composed of an intact antisense strand complemented with two shorter 10–12 nt sense strands. This three-stranded construct, termed small internally segmented interfering RNA (sisiRNA), is highly functional demonstrating that an intact sense strand is not a prerequisite for RNA interference. Moreover, when using the sisiRNA design only the antisense strand is functional in activated RISC thereby completely eliminating unintended mRNA targeting by the sense strand. Interestingly, the sisiRNA design supports the function of chemically modified antisense strands, which are non-functional within the context of standard siRNA designs. This suggests that the sisiRNA design has a clear potential of improving the pharmacokinetic properties of siRNA in vivo.  相似文献   

13.
RNA interference (RNAi) has emerged recently as an efficient mechanism for specific gene silencing. Short double-stranded small interfering RNAs (siRNAs) are now widely used for cellular or drug target validation; however, their use for silencing clinically relevant genes in a therapeutic setting remains problematic because of their unfavourable metabolic stability and pharmacokinetic properties. To address some of these concerns, we have investigated the properties of siRNA modified with 2'-deoxy-2'-fluoro-beta-d-arabinonucleotide units (araF-N or FANA units). Here we provide evidence that these modified siRNAs are compatible with the intracellular RNAi machinery and can mediate specific degradation of target mRNA. We also show that the incorporation of FANA units into siRNA duplexes increases activity and substantially enhances serum stability of the siRNA. A fully modified sense 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (FANA) strand when hybridized to an antisense RNA (i.e. FANA/RNA hybrid) was shown to be 4-fold more potent and had longer half-life in serum (approximately 6 h) compared with an unmodified siRNA (<15 min). While incorporation of FANA units is well tolerated throughout the sense strand of the duplex, modifications can also be included at the 5' or 3' ends of the antisense strand, in striking contrast to other commonly used chemical modifications. Taken together, these results offer preliminary evidence of the therapeutic potential of FANA modified siRNAs.  相似文献   

14.
Kinetic analysis of the RNAi enzyme complex   总被引:12,自引:0,他引:12  
The siRNA-directed ribonucleoprotein complex, RISC, catalyzes target RNA cleavage in the RNA interference pathway. Here, we show that siRNA-programmed RISC is a classical Michaelis-Menten enzyme in the presence of ATP. In the absence of ATP, the rate of multiple rounds of catalysis is limited by release of the cleaved products from the enzyme. Kinetic analysis suggests that different regions of the siRNA play distinct roles in the cycle of target recognition, cleavage, and product release. Bases near the siRNA 5' end disproportionately contribute to target RNA-binding energy, whereas base pairs formed by the central and 3' regions of the siRNA provide a helical geometry required for catalysis. Finally, the position of the scissile phosphate on the target RNA seems to be determined during RISC assembly, before the siRNA encounters its RNA target.  相似文献   

15.
本研究旨在探讨细胞间黏附分子1 (intercellular cell adhesion molecule-1, ICAM-1)在高钙尿肾结石(genetic hypercalcium renal stones, GHS)大鼠中的表达以及Ca^2+对肾小管上皮细胞ICAM-1的影响。取GHS大鼠和SD大鼠,荧光定量PCR检测肾组织ICAM-1 mRNA表达水平,免疫组化检测ICAM-1蛋白表达。比色法检测大鼠肾组织SOD活力和MDA水平。通过ICAM-1 siRNA转染大鼠肾小管上皮细胞系NRK-52E构建ICAM-1低表达细胞模型,Ca^2+(5 mmol/L)处理NRK-52E细胞,检测细胞SOD活力和MDA水平,通过Western blotting检测细胞ICAM-1蛋白表达水平。荧光定量PCR结果显示,与SD对照组相比,GHS组大鼠肾组织ICAM-1 mRNA水平显著升高,差异具有统计学意义(p<0.01);免疫组化结果显示,ICAM-1蛋白在GHS大鼠肾组织中呈阳性表达;氧化应激检测结果显示,与SD对照组比较,GHS组大鼠肾组织SOD活性显著降低,MDA含量显著升高,差异具有统计学意义(p<0.01)。Western blotting结果显示,与对照组比较,Ca^2+组NRK-52E细胞ICAM-1表达蛋白显著升高,差异具有统计学意义(p<0.01);与Ca^2+处理NC-siRNA组比较,Ca^2+处理ICAM-1 siRNA组NRK-52E细胞ICAM-1表达蛋白显著降低;与ICAM-1 siRNA组NRK-52E细胞比较,Ca^2+处理ICAM-1 siRNA组NRK-52E细胞后ICAM-1表达蛋白水平无显著性变化(p>0.05)。细胞氧化应激检测结果显示,与对照组比较,Ca^2+组NRK-52E细胞SOD活性显著降低,MDA含量显著升高,差异具有统计学意义(p<0.01);与Ca^2+处理NC-siRNA组比较,Ca^2+处理ICAM-1 siRNA组SOD活性显著升高,MDA含量显著降低,差异均具有统计学意义(p<0.01);与ICAM-1 siRNA组NRK-52E细胞比较,Ca^2+处理ICAM-1 siRNA组NRK-52E细胞SOD活力和MDA含量无显著性变化(p>0.05)。ICAM-1在GHS肾小管上皮细胞中高表达,Ca^2+诱导肾小管上皮细胞ICAM-1高表达,促进细胞氧化应激水平。  相似文献   

16.
RNA interference (RNAi), mediated by either long double-stranded RNA (dsRNA) or short interfering RNA (siRNA), has become a routine tool for transient knockdown of gene expression in a wide range of organisms. The antisense strand of the siRNA duplex (antisense siRNA) was recently shown to have substantial mRNA depleting activity of its own. Here, targeting human Tissue Factor mRNA in HaCaT cells, we perform a systematic comparison of the activity of antisense siRNA and double-strand siRNA, and find almost identical target position effects, appearance of mRNA cleavage fragments and tolerance for mutational and chemical backbone modifications. These observations, together with the demonstration that excess inactive double-strand siRNA blocks antisense siRNA activity, i.e. shows sequence-independent competition, indicate that the two types of effector molecules share the same RNAi pathway. Interest ingly, both FITC-tagged and 3′-deoxy antisense siRNA display severely limited activity, despite having practically wild-type activity in a siRNA duplex. Finally, we find that maximum depletion of target mRNA expression occurs significantly faster with antisense siRNA than with double-strand siRNA, suggesting that the former enters the RNAi pathway at a later stage than double-strand siRNA, thereby requiring less time to exert its activity.  相似文献   

17.
Small interfering RNAs (siRNAs) induce sequence-specific gene silencing in mammalian cells and guide mRNA degradation in the process of RNA interference (RNAi). By targeting endogenous lamin A/C mRNA in human HeLa or mouse SW3T3 cells, we investigated the positional variation of siRNA-mediated gene silencing. We find cell-type-dependent global effects and cell-type-independent positional effects. HeLa cells were about 2-fold more responsive to siRNAs than SW3T3 cells but displayed a very similar pattern of positional variation of lamin A/C silencing. In HeLa cells, 26 of 44 tested standard 21-nucleotide (nt) siRNA duplexes reduced the protein expression by at least 90%, and only 2 duplexes reduced the lamin A/C proteins to <50%. Fluorescent chromophores did not perturb gene silencing when conjugated to the 5'-end or 3'-end of the sense siRNA strand and the 5'-end of the antisense siRNA strand, but conjugation to the 3'-end of the antisense siRNA abolished gene silencing. RNase-protecting phosphorothioate and 2'-fluoropyrimidine RNA backbone modifications of siRNAs did not significantly affect silencing efficiency, although cytotoxic effects were observed when every second phosphate of an siRNA duplex was replaced by phosphorothioate. Synthetic RNA hairpin loops were subsequently evaluated for lamin A/C silencing as a function of stem length and loop composition. As long as the 5'-end of the guide strand coincided with the 5'-end of the hairpin RNA, 19-29 base pair (bp) hairpins effectively silenced lamin A/C, but when the hairpin started with the 5'-end of the sense strand, only 21-29 bp hairpins were highly active.  相似文献   

18.
Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation   总被引:39,自引:0,他引:39  
Rand TA  Petersen S  Du F  Wang X 《Cell》2005,123(4):621-629
The mRNA-cleavage step of RNA interference is mediated by an endonuclease, Argonaute2 (Ago2), within the RNA-induced silencing complex (RISC). Ago2 uses one strand of the small interfering (si) RNA duplex as a guide to find messenger RNAs containing complementary sequences and cleaves the phosphodiester backbone at a specific site measured from the guide strand's 5' end. Here, we show that both strands of siRNA get loaded onto Ago2 protein in Drosophila S2 cell extracts. The anti-guide strand behaves as a RISC substrate and is cleaved by Ago2. This cleavage event is important for the removal of the anti-guide strand from Ago2 protein and activation of RISC.  相似文献   

19.
Jin X  Sun T  Zhao C  Zheng Y  Zhang Y  Cai W  He Q  Taira K  Zhang L  Zhou D 《Nucleic acids research》2012,40(4):1797-1806
Strategies to regulate gene function frequently use small interfering RNAs (siRNAs) that can be made from their shRNA precursors via Dicer. However, when the duplex components of these siRNA effectors are expressed from their respective coding genes, the RNA interference (RNAi) activity is much reduced. Here, we explored the mechanisms of action of shRNA and siRNA and found the expressed siRNA, in contrast to short hairpin RNA (shRNA), exhibits strong strand antagonism, with the sense RNA negatively and unexpectedly regulating RNAi. Therefore, we altered the relative levels of strands of siRNA duplexes during their expression, increasing the level of the antisense component, reducing the level of the sense component, or both and, in this way we were able to enhance the potency of the siRNA. Such vector-delivered siRNA attacked its target effectively. These findings provide new insight into RNAi and, in particular, they demonstrate that strand antagonism is responsible for making siRNA far less potent than shRNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号