首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

2.
Polymer nanoparticles for sequential enzymatic reactions were prepared by combining a phospholipid polymer shell with a polystyrene core. The active ester groups for the bioconjugation and phospholipid polar groups were incorporated into the phospholipid polymer backbone using a novel active ester monomer and 2-methacryloyloxyethyl phosphorylcholine. For the sequential enzymatic reactions, acetylcholinesterase, choline oxidase, and horseradish peroxidase-labeled IgG were immobilized onto the nanoparticles. As substrates, acetylcholine chloride, choline chloride, and tetramethylbenzidine were added to the nanoparticle suspension, the acetylcholine chloride was converted to choline chloride, the choline chloride was oxidized by choline oxidase, and hydrogen peroxide was then formed as an enzymatic degradation product. The hydrogen peroxide was used for the next enzymatic reaction (oxidized by peroxidase) with tetramethylbenzidine. The sequential enzymatic reactions on the nanoparticles via degradation products (hydrogen peroxide) were significantly higher than that of the enzyme mixture. This result indicated that the diffusion pathway of the enzymatic products and the localization of the immobilized enzyme were important for these reactions. These nanoparticles were capable of facilitating sequential enzymatic reactions.  相似文献   

3.
A minimum existence criterion in the transient response of the bulk substrate concentration in a CSTR containing immobilized enzyme (IMEs) in porous solid supports has been obtained from simulation results using several kinetic expressions for the main reaction and the enzyme deactivation reaction. A simple method for the determination of the substrate effective diffusivity and the reaction rate constant is also presented, and applied to the decomposition of hydrogen peroxide, that reacts in a CSTR that contains silica–alumina porous catalyst particles, in which horseradish peroxidase enzyme had been previously immobilized.  相似文献   

4.
The rate of color formation in an activity assay consisting of phenol and hydrogen peroxide as substrates and 4-aminoantipyrine as chromogen is significantly influenced by hydrogen peroxide concentration due to its inhibitory effect on catalytic activity. A steady-state kinetic model describing the dependence of peroxidase activity on hydrogen peroxide concentration is presented. The model was tested for its application to soybean peroxidase (SBP) and horseradish peroxidase (HRP) reactions based on experimental data which were measured using simple spectrophotometric techniques. The model successfully describes the dependence of enzyme activity for SBP and HRP over a wide range of hydrogen peroxide concentrations. Model parameters may be used to compare the rate of substrate utilization for different peroxidases as well as their susceptibility to compound III formation. The model indicates that SBP tends to form more compound III and is catalytically slower than HRP during the oxidation of phenol.  相似文献   

5.
Features that alter the glycolipid sugar headgroup accessibility at the membrane interface have been studied in bilayer lipid model vesicles using a fluorescence technique with the enzyme galactose oxidase. The effects on oxidation caused by variation in the hydrophobic moiety of galactosylceramide or the membrane environment for galactosylceramide, monogalactosyldiacylglycerol and digalactosyldiacylglycerol were studied. For this study we combined the galactose oxidase method for determining the oxidizability of galactose containing glycolipids, and the fluorescence method for determining enzymatic hydrogen peroxide production. Exposed galactose residues with a free hydroxymethyl group at position 6 in the headgroup of glycolipids were oxidized with galactose oxidase and subsequently the resultant hydrogen peroxide was determined by a combination of horseradish peroxidase and 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red). Amplex Red reacts with hydrogen peroxide in the presence of horseradish peroxidase with a 1:1 stoichiometry to form resorufin. With this coupled enzyme approach it is also possible to determine the galactolipid transbilayer membrane distribution (inside-outside) in bilayer vesicles.  相似文献   

6.
Summary Oxytocin and vasopressin are oxidized by horseradish peroxidase and by lactoperoxidase, in the presence of hydrogen peroxide. Spectrophotometric measurements are indicative of the formation of dityrosine. Kinetic parameters indicate that the affinity of horseradish peroxidase is slightly higher for oxytocin with respect to vasopressin and that the two hormones are better substrates for both peroxidases than free tyrosine.  相似文献   

7.
The oxidation of the phenacetin metabolites p-phenetidine and acetaminophen by peroxidases was investigated. Free radical intermediates from both metabolites were detected using fast-flow ESR spectroscopy. Oxidation of acetaminophen with either lactoperoxidase and hydrogen peroxide or horseradish peroxidase and hydrogen peroxide resulted in the formation of the N-acetyl-4-aminophenoxyl free radical. Totally resolved spectra were obtained and completely analyzed. The radical concentration was dependent on the square root of the enzyme concentration, indicating second-order decay of the radical, as is consistent with its dimerization or disproportionation. The horseradish peroxidase/hydrogen peroxide-catalyzed oxidation of p-phenetidine (4-ethoxyaniline) at pH 7.5-8.5 resulted in the one-electron oxidation products, the 4-ethoxyaniline cation free radical. The ESR spectra were well resolved and could be unambiguously assigned. Again, the enzyme dependence of the radical concentration indicated a second-order decay. The ESR spectrum of the conjugate base of the 4-ethoxyaniline cation radical, the neutral 4-ethoxyphenazyl free radical, was obtained at pH 11-12 by the oxidation of p-phenetidine with potassium permanganate.  相似文献   

8.
Due to their frequent occurrence in food, cosmetics and pharmaceutical products, and their poor solubility in water, the detection of peroxides in organic solvents has aroused significant interest. For diagnostics or on-site testing, a fast and specific experimental approach is required. Although aqueous peroxide biosensors are well known, they are usually not suitable for nonaqueous applications due to their instability. Here we describe an organic phase biosensor for hydrogen peroxide based on horseradish peroxidase immobilized in an Eastman AQ 55 polymer matrix. Rotating disc amperometry was used to examine the effect of the solvent properties, the amount and pH of added buffer, the concentration of peroxide and ferrocene dimethanol, and the amount of Eastman AQ 55 and of enzyme on the response of the biosensor to hydrogen peroxide. The response of the biosensor was limited by diffusion. Linear responses (with detection limits to hydrogen peroxide given in parentheses) were obtained in methanol (1.2 microM), ethanol (0.6 microM), 1-propanol (2.8 microM), acetone (1.4 microM), acetonitrile (2.6 microM), and ethylene glycol (13.6 microM). The rate of diffusion of ferrocene dimethanol was more constrained than the rate of diffusion of hydrogen peroxide, resulting in a comparatively narrow linear range. The main advantages of the sensor are its ease of use and a high degree of reproducibility, together with good operational and storage stability.  相似文献   

9.
The binding of indole to both horseradish peroxidase and its cyanide complex can be detected by difference spectra in the Soret region. Indole and cyanide binding are not competitive processes. The effect of indole on the binding rate constants between horseradish peroxidase and cyanide and compound I formation reactions between horseradish peroxidase and hydrogen peroxide or m-chloroperbenzoic acid was studied by the stopped-flow method. In all cases the rate constants of the indole-peroxidase complex with the ligand or substrates were smaller than those of free peroxidase. Since the m-chloroperbenzoic acid reaction has been shown to approach a diffusion-controlled rate, the effect of indole binding on the rate constant for compound I formation using this peracid was analyzed semiquantitatively using theoretical equations for a diffusion-controlled rate process with a capture-window active site model. The effect of indole binding on the diffusion-controlled rate constant could be explained by a decrease in the radius of the capture-window active site.  相似文献   

10.
The present study aims at investigating the use of redox dyes as non-diffusional electron mediators in hydrogen peroxide biosensors using horseradish peroxidase (HRP). We observe that the two redox dyes Safranine O and Neutral Red covalently bound to HRP, efficiently mediate electron transfer from the active site of the enzyme to the electrode surface. Dyes bound to the enzyme using a spacer arm diaminohexane further enhance the electron transfer. The enzyme electrodes show a linear response to the concentration of H2O2 up to 500 microM concentration and with a detection limit of around 50 microM. The dyes can be used as coupled mediators to develop a successful electro-optical biosensor.  相似文献   

11.
The reaction kinetics of the peroxidase activity of prostaglandin H synthase have been examined with 15-hydroperoxyeicosatetraenoic acid and hydrogen peroxide as substrates and tetramethylphenylenediamine as cosubstrate. The apparent Km and Vmax values for both hydroperoxides were found to increase linearly with the cosubstrate concentration. The overall reaction kinetics could be interpreted in terms of an initial reaction of the synthase with hydroperoxide to form an intermediate equivalent to horseradish peroxidase Compound I, followed by reduction of this intermediate by cosubstrate to regenerate the resting enzyme. The rate constants estimated for the generation of synthase Compound I were 7.1 X 10(7) M-1 s-1 with the lipid hydroperoxide and 9.1 X 10(4) M-1 s-1 with hydrogen peroxide. The rate constants estimated for the rate-determining step in the regeneration of resting enzyme by cosubstrate were 9.2 X 10(6) M-1 s-1 in the case of the reaction with lipid hydroperoxide and 3.5 X 10(6) M-1 s-1 in the case of reaction with hydrogen peroxide. The intrinsic affinities of the synthase peroxidase for substrate (Ks) were estimated to be on the order of 10(-8) M for lipid hydroperoxide and 10(-5) M for hydrogen peroxide. These affinities are quite similar to the reported affinities of the synthase for these hydroperoxides as activators of the cyclooxygenase. The peroxidase activity was found to be progressively inactivated during the peroxidase reaction. The rate of inactivation of the peroxidase was increased by increases in hydroperoxide level, and decreased by increases in peroxidase cosubstrate. The inactivation of the peroxidase appeared to occur by a hydroperoxide-dependent process, originating from synthase Compound I or Compound II.  相似文献   

12.
A temperature-responsive lipase nanogel (denoted as CRL-IPN nanogel), in which lipase is encapsulated into an interpenetrating polymer matrix formed by polyacrylamide and poly(N-isopropylacrylamide) (PNIPAAm) has been designed and synthesized for an enhanced stability and activity in both aqueous and non-polar organic solvents. A three-step method, including acryloylation, polymerization with acrylamide and sequential polymerization with N-isopropylacrylamide, was established to fabricate enzyme nanogel with temperature-sensitive interpenetrating polymer network. It has been shown by an all-atom molecular dynamics simulation that above mentioned polymer matrix forms a more hydrophobic environment, as compared to that obtained with sole polyacrylamide, because of the penetration of N-isopropylacrylamide into the polymer acrylamide network via hydrogen bonding, which is further confirmed by the fluorescence spectrum. This favours the uptake of hydrophobic substrates and thus the overall rate of enzymatic catalysis. The enhanced stability and catalytic performance of this novel lipase nanogel in aqueous and non-polar organic solvent were demonstrated by using hydrolysis reaction of p-NPP in aqueous and esterification reaction of ibuprofen in isooctane. In aqueous solution, the residual activity of CRL-IPN nanogel maintains its 70% activity at 60 °C after 4 h, compared with that free lipase only has 30% at the same condition. In addition, the CRL-IPN nanogel can be reused for 10 cycles with no loss of its activity. In isooctane, CRL-IPN nanogel gave a 33% yield of esterification of ibuprofen, in comparison to 22% using free lipase and less than 5% using lipase encapsulated in a polyacrylamide matrix. The enhanced stability and activity make this CRL-IPN nanogel promising for enzymatic catalysis in non-polar solvents.  相似文献   

13.
The reaction of ribose with horseradish peroxidase in the presence of H2O2 is accompanied by light emission. The detection of horseradish peroxidase Compound II (FeO2+) indicates that the enzyme participates in a normal peroxidatic cycle. Hydrogen peroxide converts horseradish peroxidase into Compound I (FeO3+) which in turn is converted into Compound II by abstracting a hydrogen atom from ribose forming a ribosyl radical. In aerated solutions oxygen rapidly adds to the ribosyl radical. Based on the spectral characteristics and the enhancement of the chemiluminescence by chlorophyll-a, xanthene dyes, D2O and DABCO, it is suggested that the excited species, apparently triplet carbonyls and 1O2, are formed from the bimolecular decay of the peroxyl radicals via the Russell mechanism.  相似文献   

14.
Controlled layer-by-layer immobilization of horseradish peroxidase.   总被引:2,自引:0,他引:2  
Horseradish peroxidase (HRP) was biotinylated with biotinamidocaproate N-hydroxysuccinimide ester (BcapNHS) in a controlled manner to obtain biotinylated horseradish peroxidase (Bcap-HRP) with two biotin moieties per enzyme molecule. Avidin-mediated immobilization of HRP was achieved by first coupling avidin on carboxy-derivatized polystyrene beads using a carbodiimide, followed by the attachment of the disubstituted biotinylated horseradish peroxidase from one of the two biotin moieties through the avidin-biotin interaction (controlled immobilization). Another layer of avidin can be attached to the second biotin on Bcap-HRP, which can serve as a protein linker with additional Bcap-HRP, leading to a layer-by-layer protein assembly of the enzyme. Horseradish peroxidase was also immobilized directly on carboxy-derivatized polystyrene beads by carbodiimide chemistry (conventional method). The reaction kinetics of the native horseradish peroxidase, immobilized horseradish peroxidase (conventional method), controlled immobilized biotinylated horseradish peroxidase on avidin-coated beads, and biotinylated horseradish peroxidase crosslinked to avidin-coated polystyrene beads were all compared. It was observed that in solution the biotinylated horseradish peroxidase retained 81% of the unconjugated enzyme's activity. Also, in solution, horseradish peroxidase and Bcap-HRP were inhibited by high concentrations of the substrate hydrogen peroxide. The controlled immobilized horseradish peroxidase could tolerate much higher concentrations of hydrogen peroxide and, thus, it demonstrates reduced substrate inhibition. Because of this, the activity of controlled immobilized horseradish peroxidase was higher than the activity of Bcap-HRP in solution. It is shown that a layer-by-layer assembly of the immobilized enzyme yields HRP of higher activity per unit surface area of the immobilization support compared to conventionally immobilized enzyme.  相似文献   

15.
Hydrogen peroxide production from reactive liposomes encapsulating enzymes.   总被引:2,自引:0,他引:2  
Reactive cationic and anionic liposomes have been prepared from mixtures of dimyristoylphosphatidylcholine (DMPC) and cholesterol incorporating dimethyldioctadecylammonium bromide and DMPC incorporating phosphatidylinositol, respectively. The liposomes were prepared by the vesicle extrusion technique and had the enzymes glucose oxidase (GO) encapsulated in combination with horseradish peroxidase (HRP) or lactoperoxidase (LPO). The generation of hydrogen peroxide from the liposomes in response to externally added D-glucose substrate was monitored using a Rank electrode system polarised to +650 mV, relative to a standard silver-silver chloride electrode. The effects of encapsulated enzyme concentration, enzyme combinations (GO+HRP, GO+LPO), substrate concentration, electron donor and temperature on the production of hydrogen peroxide have been investigated. The electrode signal (peroxide production) was found to increase linearly with GO incorporation, was reduced on addition of HRP and an electron donor (o-dianisidine) and showed a maximum at the lipid chain-melting temperature from the anionic liposomes containing no cholesterol. To aid interpretation of the results, the permeability of the non-reactive substrate (methyl glucoside) across the bilayer membranes was measured. It was found that the encapsulation of the enzymes effected the permeability coefficients of methyl glucoside, increasing them in the case of anionic liposomes and decreasing them in the case of cationic liposomes. These observations are discussed in terms of enzyme bilayer interactions.  相似文献   

16.
Polyketone polymer -[-CO-CH(2)-CH(2)-](n)-, obtained by copolymerization of ethene and carbon monoxide, is utilized for immobilization of three different enzymes, one peroxidase from horseradish (HRP) and two amine oxidases, from bovine serum (BSAO) and lentil seedlings (LSAO). The easy immobilization procedure is carried out in diluted buffer, at pH 7.0 and 3 degrees C, gently mixing the proteins with the polymer. No bifunctional reagents and spacer arms are required for the immobilization, which occurs exclusively via a large number of hydrogen bonds between the carbonyl groups of the polymer and the -NH groups of the polypeptidic chain. Experiments demonstrate a high linking capacity of polymer for BSAO and an extraordinary strong linkage for LSAO. Moreover, activity measurements demonstrate that immobilized LSAO totally retains the catalytic characteristics of the free enzyme, where only a limited increase of K(M) value is observed. Finally, the HRP-activated polymer is successfully used as active packed bed of an enzymatic reactor for continuous flow conversion and flow injection analysis of hydrogen peroxide containing solutions.  相似文献   

17.
A F Coulson  T Yonetani 《Biochemistry》1975,14(11):2389-2396
A number of reagents, some of which are electronic analogs of hydrogen peroxide, will replace it in the reactions of cytochrome c peroxidase. These compounds include N-bromosuccinimide, sodium hypochlorite, and the novel oxidizing agent O-benzoylhydroxylamine. If fragments of the oxidant played a functional role in the structure of the oxidized form of the enzyme, it would be expected that the product formed from O-benzoylhydroxylamine would differ from that formed from hydrogen peroxide. The products formed on reaction of the two oxidizing agents with cytochrome c peroxidase are indistinguishable. This results carries implications for the structure of the so-called ES compound. The extension in the range of specific substrates for cytochrome c peroxidase allows identification of the structure which compounds must possess to be oxidizing substrates for the enzyme. A mechanism for the first step of the reaction is suggested. O-Benzoylhydroxylamine is also a reducing agent, and its reaction with the enzyme is analogous to that of hydrogen peroxide with catalase. The final product of the reaction is the inert nitric oxide complex of ferrous cytochrome c peroxidase.  相似文献   

18.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

19.
Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.  相似文献   

20.
Tropolone (2,4,6-cycloheptatrien-1-one), in the presence of hydrogen peroxide but not in its absence, can serve as a donor for the horseradish peroxidase catalysed reaction. The product formed is yellow and is characterized by a new peak at 418 nm. The relationship between the rate of oxidation of tropolone (ΔA at 418 nm/min) and various concentrations of horseradish peroxidase, tropolone and hydrogen peroxide is described. The yellow product obtained by the oxidation of tropolone by horseradish peroxidase in the presence of hydrogen peroxide was purified by chromatography on Sephadex G-10 and its spectral properties at different pHs are presented. The M, of the yellow product was estimated to be ca 500, suggesting that tropolone, in the presence of horseradish peroxidase and hydrogen peroxide is converted to a tetratropolone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号