首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of 12 baby hamster kidney (BHK) clones in exponential growth revealed a linear relationship between cell-specific recombinant activated protein C (APC) production rates and APC mRNA levels. This correlation indicated that mRNA levels limited APC productivity. Two strategies were employed to increase APC mRNA levels and APC productivity. First, sodium butyrate was added to increase mRNA levels by two- to sixfold in five APC-producing clones to obtain up to 2.7-fold increase in APC production rate. The second strategy was to retransfect an APC-producing BHK cell line with a vector containing additional APC cDNA and a mutant DHFR. This mutant DHFR gene allowed the selection of retransfected clones in higher MTX concentrations. Over two-fold higher mRNA levels were obtained in these retransfected clones and the cell-specific APC production rate increased twofold. At the highest level of APC secretion, increases in mRNA levels did not result in higher rates of APC production. Analysis of the intracellular APC content revealed a possible saturation in the secretory pathway at high mRNA levels. The relation between mRNA level and APC secretion rate was also investigated in batch culture. The levels of total cellular RNA, APC mRNA, and beta-actin mRNA were relatively stable while cells were in the exponential growth phase, but rapidly decreased when cells reached the stationary phase. The decline of cell-specific APC mRNA levels correlated with a decline in APC secretion rates, which indicated that the mRNA levels continued to limit the rates beyond the exponential phase and into the declining growth and stationary phases of batch APC production.  相似文献   

2.
A potential vaccine candidate, Necator americanus secretory protein (Na-ASP1), against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1, a 45 kDa protein containing 20 cysteines, was directed outside the cell by fusing the protein to the preprosequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene. Overexpression of the endoplasmic reticulum (ER) resident, homologous chaperone protein, protein disulfide isomerase (PDI) was able to increase the secretion of (Na-ASP1) protein in high copy clones. The effect of PDI levels on secretion of Na-ASP1 protein was examined in clones with varying copy number of PDI gene. Increase in secreted Na-ASP1 secretion is correlated well with the PDI copy number. Increasing levels of PDI also increased overall Na-ASP1 protein production in all the clones. Nevertheless, there was still accumulation of intracellular Na-ASP1 protein in P. pastoris clones over-expressing Na-ASP1 and PDI proteins.  相似文献   

3.
4.
BACKGROUND: Ex vivo gene therapy of acute myeloid leukemia (AML) requires efficient transduction of leukemic cells. Recombinant adenovirus has been reported to be a poorly efficient vector in leukemic cells. We investigated leukemic cell culture as a possible method of improving the efficacy of this vector. METHODS: Leukemic cell lines and primary cultured AML cells were incubated with adenoviral vectors carrying GFP, LacZ, or IL-12 cDNA. Transduction efficiency was evaluated by measuring adenoviral genome copy number and transgene expression in leukemic cells. The expression of the coxsackie/adenovirus receptor (CAR), CD29, CD49e, and CD51/61 was measured, as was the effect of blocking integrin on adenoviral transduction. RESULTS: Increasing the multiplicity of infection (MOI) to 300 plaque-forming units per cell enhanced transduction of leukemic cell lines and to a lesser degree of AML cells. Analysis of adenoviral genome copy per cell showed only a partial correlation between gene transfer efficiency and transgene expression. Culture of AML cells for 3 days prior to adenoviral transduction increased both adenoviral copy number per cell and the percentage of transgene-expressing cells. CD29, CD49e, and CD51/61 but not CAR expression increased in cultured AML cells between days 0 and 3 and integrin-blocking experiments showed inhibition of transduction in two of four AML samples tested. CONCLUSIONS: Efficient ex vivo gene transfer in primary cultured AML cells can be achieved by short-term culture of leukemic cells prior to gene transfer with adenoviral vectors at a high MOI. This effect appears to be at least partially mediated by enhanced integrin expression.  相似文献   

5.
In situ hybridization can be used to quantitate viral RNA at the single cell level by measuring levels of hybridization after saturation hybridization with an excess of cDNA probe has been achieved (1,2). In this paper we describe an alternative approach which consists in measuring the initial hybridization rate using a low concentration of cDNA probe and a short hybridization time. Under these conditions, we obtained a linear relationship between the number of autoradiographic grains and the number of viral genomes per cell in the range of 600 to 60,000 copies per cell of a 7-kb RNA genome. This approach allows an accurate measurement of copy number in a range for which saturation in situ hybridization is very difficult to achieve.  相似文献   

6.
Relative levels of many individual proteins in Escherichia coli HB101 strains with 0, 37, 56, and 240 plasmids per chromosome were determined by computer image analysis of two-dimensional gel electrophoresis patterns. The plasmids investigated had very similar sequences except for small domains encoding the represser of plasmid replication. At the intermediate plasmid copy number of 56, levels of several of the TCA cycle enzymes (oxoglutarate dehydrogenase complex, succinate thiokinase, and succinate dehydrogenase) as well as in aspartate transcarbamoylase increased. At a plasmid copy number of 240, higher amounts of PEP carboxylase as well as several of the heat shock proteins were observed. Furthermore, at high plasmid levels, significant decreases occurred in growth rate, pyruvate kinase I, pyruvate dehydrogenase complex, unadenylated glutamine synthetase, aspartate transcarbamoylase as well as in several of the proteins involved in translation. Decreases in ribosome content as well as in the free 30S and 50S ribosomal subunit pool fractions were also observed in separate analyses. These results indicate that recombinant DNA manipulations can cause major alterations in numerous host cell properties which could significantly influence cloned protein production or metabolic engineering endeavors.  相似文献   

7.
Retroviral cDNA expression libraries allow the efficient introduction of complex cDNA libraries into virtually any mitotic cell type for screening based on gene function. The cDNA copy number per cell can be easily controlled by adjusting the multiplicity of infection, thus cell populations may be generated in which >90% of infected cells contain one to three cDNAs. We describe the isolation of two known oncogenes and one cell-surface receptor from a human Burkitt’s lymphoma (Daudi) cDNA library inserted into the hightiter retroviral vector pFB.  相似文献   

8.
As the first step for production of human apolipoprotein E (hApoE) in Saccharomyces cerevisiae, the hApoE cDNA was cloned in Escherichia coli, on the basis of the nucleotide sequence reported previously. When the hApoE cDNA including its pre-sequence-encoding region was expressed under the control of the GAL7 promoter, no protein immunoreactive with anti-hApoE antibody was detected either in the culture medium or inside the cells. For efficient production and secretion of hApoE in S. cerevisiae, the mature hApoE-encoding region was fused to the prepro-sequence region of Rhizomucor rennin (MPR) and to the whole MPR gene including its prepro- and mature-MPR regions. When the fusion gene consisting of the prepro-sequence-encoding region and hApoE regions was expressed in S. cerevisiae, no protein reactive with the anti-hApoE antibody was detected in any fraction of the yeast cells, probably due to rapid degradation of the hApoE protein by yeast proteases. On the othe hand, when hApoE was expressed as a fusion to the whole MPR protein, a considerable amount of the fused protein was secreted into the medium. The preprosequence of MPR was correctly processed from the fused protein in the medium by autocatalytic activity of MPR and by a protease(s) of the host cell. Integration of the fusion gene into the chromosome at a copy number of eight led to secretion of the fused protein in a larger amount than the case when the fusion gene was carried on a 2-µm plasmid with its copy number of a few hundreds, because the 2-µm derived plasmid containing the fusion gene was very unstable in the yeast cells. The secretion level was also improved by changing g the culture conditions. A maximum yield of hApoE part in the secreted fused protein was estimated to be 23.7 mg per liter and the amount of the fused protein was calculated to be 53.0 mg per liter.  相似文献   

9.
Buchnera, endosymbiotic bacteria of aphids possess many genomic copies per cell. In this study, we estimated genomic copy number per Buchnera cell from host insects at various developmental stages and of two different morphs, apterae and alatae, by fluorimetry and real-time quantitative PCR. The results indicated that the genomic copy number of Buchnera increased during postembryonic development of insects to adulthood, and that it decreased during the host's ageing. In Buchnera from alatae, the genomic copy number per cell was about twice as many as in those from apterae. DAPI-staining showed that the distribution of the genomic DNA in the Buchnera cells from old insects tended to aggregate, suggesting that intracellular structure of the genomic DNA of Buchnera varies in response to the physiological conditions of their host.  相似文献   

10.
The copy number per cell mass of plasmid pBR322 and a rom- derivative was measured as a function of generation time. In fast growing cells the copy number per cell mass was virtually identical for rom+ and rom- derivatives. However, the copy number of pBR322 only increased 3- to 4-fold from a 20- to 80-min generation time, whereas the copy number of the rom- derivative increased 7- to 10-fold. The copy number stayed constant for the rom+ and rom- plasmids at generation times longer than 80-100 min. Thus, the presence of the rom gene decreased the copy number of plasmid pBR322 in slowly growing cells at least 2-fold when compared with the rom- plasmid. To study the effect of the rom gene in trans we cloned the gene into the compatible P15A-derived rom- plasmid pACYC184. In cells carrying both pACYC184 rom+ and pBR322 rom- the presence of the rom gene in trans had little effect on the copy number of pBR322 rom- at fast growth, but it decreased its copy number at slow growth to the same level as found for pBR322, i.e., complemented the pBR322 rom- plasmid. The pACYC184 plasmid and its rom+ derivatives showed copy numbers similar to those of pBR322 rom- and pBR322 itself, respectively, at fast and slow growth. We conclude that the rom gene product-the Rom protein-is an important element in copy number control of ColE1-type plasmids especially in slowly growing cells.  相似文献   

11.
Yang Q  Xu S  Li X  Wang B  Wang X  Ma D  Yang L  Peng J  Hou M 《PloS one》2011,6(7):e22708
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by anti-platelet autoantibody-mediated platelet destruction. Antigen-presenting cell (APC) dysfunction is considered to play crucial roles in ITP. However, how APC affects autoreactive B cells in ITP is still unknown. Using a mouse model of immune thrombocytopenia, we demonstrated an increase in levels of TLR7 in splenic mononuclear cells (SMCs). Using both TLR7 agonist and TLR7 silencing lentivirus, we found stimulation of TLR7 decreased platelet counts and increased levels of platelet-associated IgG (PAIgG) in ITP mice, which correlates TLR7 with platelet destruction by autoantibodies. Levels of serum BAFF increased significantly in ITP mice and stimulation of TLR7 promoted secretion of BAFF. Among the three BAFF receptors, only BAFF receptor (BAFF-R) increased in ITP mice. However, activation of TLR7 showed no effect on the expression of BAFF receptors. These findings indicate that upregulation of TLR7 may augment BAFF secretion by APC and through ligation of BAFF-R promote autoreactive B cell survival and thus anti-platelet autoantibody production. The pathway of TLR7/BAFF/BAFF-R provides us with an explanation of how activation of APC affects autoantibody production by B cells in ITP and thus might provide a reasonable therapeutic strategy for ITP.  相似文献   

12.
13.
Plasmid-host cell interactions have been investigated experimentally using Escherichia coli HB101, plasmid RSF1050 which contains the origin of replication of pMB1, and four other closely related copy number mutant plasmids. Growth characteristics of these recombinant strains and beta-lactamase activity expressed from a plasmid gene were investigated in Luria broth (LB) and in minimal medium (M9) containing in some cases casamino acids or different concentrations of alpha-methylglucoside, a competitive inhibitor of glucose transport. Maximum specific growth rates in LB and minimal media were reduced for increasing plasmid content per cell. Plasmid copy number increased when specific growth rate was reduced by changing medium composition. Growth rates of high copy number strains were less sensitive to alpha-methylglucoside than lower copy number strains and the plasmidfree host. The overall efficiency of plasmid gene expression, measured as the ratio of beta-lactamase specific activity to plasmid content, decreased significantly with increasing plasmid content in LB medium.  相似文献   

14.
Some of the problems encountered with human or human-mouse heterohybridomas, such as low growth rates and high serum requirements, have led to the increased use of recombinant cell lines for production of human antibodies. To evaluate the suitability of such alternative cell lines for the production of human antibodies we have analysed several subclones with differing specific production rates of a recombinant CHO cell line. Gene copy number and site of chromosomal integration for the light and heavy chain and the dhfr gene were determined by in-situ hybridisation. Specific mRNA content was analysed by Northern blot. In addition the intracellular content in light and heavy chain was measured by flow cytometry and the specific secretion rates were determined. The stability of gene expression was followed in the highest producing subclone for over a year. As previously seen in heterohybridoma cells a high expression rate of light chain is beneficial in speeding up secretion rates of whole antibody. When grown in the presence of G418 and methotrexate the amplified gene copies in the genome of recombinant CHO cells were stable over more than 100 passages. However, the expression of light chain, and with it the secretion rate, decreased with time. The low intracellular concentration of light chain resulted in accumulation of heavy chain in the endoplasmic reticulum due to retention by chaperones. The specific secretion rate decreased by 50% after 100 passages. When no G418 or methotrexate were present 75% of the gene copies were lost after 100 passages.  相似文献   

15.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   

16.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   

17.
Summary GH3 cell secretory activity was studied in long-term perifusion to define previously reported spontaneous increases in growth hormone (GH) and prolactin production (PRL). Mechanically harvested cells (1×107/column) were perifused at 4 ml/h for 72 h. A basal period of variable duration (8 to 12 h), during which hormone secretion was stable, was followed by steadily increasing secretion rates. Changes in cell number were not sufficient to acount for increased jormone secretion rates: a) there was no significant change in cell count after 72 h (0.97±0.03×107;n=18); b) mean cell column DNA content increased 25.5% above the base value, whereas GH secretion rose 385% and PRL rose 178% (n=5). Observed differences in the duration of the basal secretion period, the basal secretory rate, and the magnitude of secretory rate increase were associated with several variables: a) variablility within a subline was a function of passage number: GH secretion decreased and PRL secretion increased with subculture number; b) cells with identical lot and freeze numbers, but received at different times, behaved differently; c) the presence of an antifungal agent (nystatin) altered hormone secretion reproducibly. Conclusions: a) rates of GH and PRL secretion rise spontaneously in perifusion without a proportional increase in GH3 cell number; b) fluctuations in the rate of GH3 cell secretion of GH and PRL are not entirely random but are determined by several definable variables. Supported by a grant to MES from the National Institutes of Health (AM33388) and in part by the Medical Research Service of the Veterans Administration.  相似文献   

18.
Activated protein C (APC) regulates the functional activity of mast cells by reducing release of β-hexosaminidase, the marker of mast cell degranulation. APC modulated not only spontaneous secretion from mast cells, but also secretion induced by the degranulators, proteinase-activated receptor agonist peptide (PAR1-AP) and compound 48/80. PAR1 desensitization by thrombin abolished the decrease of β-hexosaminidase secretion induced by low APC concentrations (≤1.5 nM). APC inactivated by phenylmethylsulfonyl fluoride (PMSF), did non mimic the enzyme action on mast cells. Duodenase (the duodenal proteinase) activated peritoneal mast cell via PAR1. APC abolished the proinflammatory effect of duodenase and PAR1-AP by reducing release of mast cell mediators. The effect of APC could be attributed to nitric oxide generation by mast cells because in the presence of L-NAME the secretory function restored. These data suggest involvement of mast cell PAR1 into regulatory mechanism responsible for the anti-inflammatory effect of APC.  相似文献   

19.
20.
We assayed chromosomal abnormalities in hepatoma cell lines using the microarray-based comparative genomic hybridization (array-CGH) method and investigated the relationship between genomic copy number alterations and expression profiles in these hepatoma cell lines. We modified a cDNA array-CGH assay to compare genomic DNAs from seven hepatoma cell lines, as well as DNA from two non-hepatoma cell lines and from normal cells. The mRNA expression of each sample was assayed in parallel by cDNA microarray. We identified small amplified or deleted chromosomal regions, as well as alterations in DNA copy number not previously described. We predominantly found alterations of apoptosis-related genes in Hep3B and HepG2, cell adhesion and receptor molecules in HLE, and cytokine-related genes in PLC/PRF/5. About 40% of the genes showing amplification or loss showed altered levels of mRNA (p < 0.05). Hierarchical clustering analysis showed that the expression of these genes allows differentiation between alpha-fetoprotein (AFP)-producing and AFP-negative cell lines. cDNA array-CGH is a sensitive method that can be used to detect alterations in genomic copy number in tumor cells. Differences in DNA copy alterations between AFP-producing and AFP-negative cells may lead to differential gene expression and may be related to the phenotype of these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号