首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
All transhydrogenases appear to have three components: dI, which binds NAD(H), and dIII, which binds NADP(H), protrude from the membrane, and dII spans the membrane. However, the polypeptide composition of the enzymes varies amongst species. The transhydrogenases of Mycobacterium tuberculosis and of Rhodospirillum rubrum have three polypeptides. Sequence analysis indicates that an ancestral three-polypeptide enzyme evolved into transhydrogenases with either two polypeptides (such as the Escherichia coli enzyme) or one polypeptide (such as the mitochondrial enzyme). The fusion steps in each case probably led to the development of an additional transmembrane helix. A hybrid transhydrogenase was constructed from the dI component of the M. tuberculosis enzyme and the dII and dIII components of the R. rubrum enzyme. The hybrid catalyses cyclic transhydrogenation but not the proton-translocating, reverse reaction. This shows that nucleotide-binding/release at the NAD(H) site, and hydride transfer, are fully functional but that events associated with NADP(H) binding/release are compromised. It is concluded that sequence mismatch in the hybrid prevents a conformational change between dI and dIII which is essential for the step accompanying proton translocation.  相似文献   

3.
4.
Polarographic studies on oxidation-reduction components bound with chromatophores from Rhodospirillum rubrum were carried out at 24 degrees. 1. Using a carbon-paste electrode as the working electrode, polarographic waves characteristic of oxidation-reduction components were observed in the presence, but not in the absence of Triton X-100; these waves were therefore measured in the presence of the detergent. 2. At least two kinds of oxidation-reduction components were detectable, having different half-wave potentials (E1/2); at pH 7, one had an E1/2 value of +275 mV (POC+275) and the other had a value of +60 mV (POC+60). 3. POC+275 was reduced by succinate and by NADH. Both reductions were almost completely inhibited by antimycin A, which hardly affected the reductions of ubiquinone-10 by succinate and by NADH. Most POC+275 molecules were not reduced by the substrates when quinones were extracted from the chromatophores, and the reductions were mostly restored when ubiquinone-10 was re-added. This indicates that POC+275 is functional between ubiquinone-10 and cytochrome c2 in the electron transport system. 4. POC+60 was reduced by succinate, but hardly at all by NADH. The reduction of POC+60 was not influenced either by the addition of antimycin A or by the extraction of quinones. This suggests that POC+60 is functional in the process from succinate dehydrogenase [EC 1.3.99.1] to ubiquinone-10 in the electron transport system. 5. Of the POC+275 reducible by dithionite, approximately 70% could be reduced in the absence of Triton X-100, provided that the potential of the working electrode immersed in chromatophore suspensions was set at potentials of 0 mV or lower and that the electrochemical reaction was carried out at pH 7.5. When the potential of the electrode was set at +50 mV (the same as the E1/2 value of ubiquinone-10 bound with chromatophores), and the suspension was allowed to stand for various lengths in the presence of the detergent, it was found that approximately half of the electrochemically reducible POC+275 was rapidly reduced, followed by a slow reduction. The discrepancy in the oxidation-reduction equilibrium on the basis of the E1/2 values of ubiquinone-10 and POC+275 is discussed.  相似文献   

5.
Removal of ADP-ribose from the iron protein of nitrogenase by activating enzyme resulted in the activation of the inactive iron protein. A radioassay that directly measured the initial velocity of the activation was developed using iron protein radiolabeled with either [8-3H]- or [G-32P]ADP-ribose. The release of radiolabeled ADP-ribose by activating enzyme was linearly correlated with the increase in the specific activity of the iron protein as measured by acetylene reduction. Both ATP and MnCl2 were required for the activation of inactive iron protein. The optimal ratio of [MnCl2]/[ATP] in the radioassay was 2:1, and the optimal concentrations were 4 mM and 2 mM for [MnCl2] and [ATP], respectively. The Km for inactive iron protein was 74 microM and the Vmax was 628 pmol of [32P] ADP-ribose released min-1 microgram of activating enzyme-1. Adenosine, cytidine, guanosine, or uridine mono-, di-, or triphosphates did not substitute for ATP in the activation of native iron protein. Activating enzyme removed ADP-ribose from oxygen-denatured iron protein in the absence of ATP. ADP, ADP-ribose, pyrophosphate, and high concentrations of NaCl inhibited activating enzyme activity.  相似文献   

6.
Nitrogenase activity in the photosynthetic bacterium Rhodospirillum rubrum is reversibly regulated by interconversion of the Fe protein between a modified and an unmodified form. Since the discovery of the activation process in 1976, investigators have been unable to demonstrate the inactivation (modification) reaction in vitro. In this study, NAD-dependent modification and concomitant inactivation of the Fe protein were demonstrated in crude extracts of R. rubrum. Activation of the in vitro-modified Fe protein by activating enzyme and structural similarity between the in vivo and in vitro modifications are presented as evidence that the in vitro modification is the physiologically relevant ADP-ribosylation reaction. Using a partially purified preparation, we showed that the inactivating enzyme activity is stimulated by divalent metal ions and ADP, that O2-denatured Fe protein will not serve as a substrate, and that dithionite inhibits the modification reaction.  相似文献   

7.
8.
Oxidation of NADPH catalyzed by the peroxidase/H2O2 system is known to require the presence of mediating molecules. Using either lactoperoxidase or horseradish peroxidase, we demonstrated that in the peroxidase/H2O2 system, NADPH oxidation was mediated by iodide. The oxidation product was the iodinated NADP. This product was shown to possess spectral characteristics different from those of NADP+ and NADPH, since for iodinated NADP, increased absorbance was observed in the 280-nm region and was directly proportional to the rate of iodination. It is suggested that oxidation and iodination of NADPH proceed via a single reaction between the intermediary iodide oxidation species and NADPH. Experiments with different molecules of NADPH analogues indicated that iodination occurred in the nicotinamide part of the NADPH molecule.  相似文献   

9.
Although in mitochondria, Escherichia coli and Rhodobacter capsulatus the H(+)-transhydrogenases are intrinsic membrane proteins, in Rhodospirillum rubrum a water-soluble component (Ths) and a membrane-bound component are together required for activity. Ths was selectively removed from chromatophore membranes of Rhs. rubrum and was purified to homogeneity by precipitation with (NH4)2SO4 and ion-exchange, affinity dye and gel exclusion chromatography. The latter indicated an Mr of approx. 74,000 under non-denaturing conditions but analysis of the pure protein by SDS-PAGE revealed a single polypeptide, Mr 43,000. Antibodies against this polypeptide inhibited transhydrogenase activity of chromatophores and decreased the capacity of Ths to restore activity to depleted membranes. They reacted with a polypeptide of Mr 43,000 in crude cell extract, chromatophore membranes and chromatophore washings but not with transhydrogenase polypeptides from the membranes of E. coli, Rb. capsulatus or animal mitochondria. The N-terminal amino acid sequence of the 43,000 polypeptide was strongly homologous with the reported N-terminal regions of mitochondrial transhydrogenase and the alpha subunit of the E. coli protein. The break between the alpha and beta polypeptides of E. coli transhydrogenase is such that both components are membrane-associated. In contrast, these results suggest that in the Rhs. rubrum enzyme Ths has been formed by a break closer to the N-terminus, thus avoiding the putative trans-membrane helical segments and yielding a relatively hydrophilic subunit, which is water-soluble. There is a predicted similarity between Ths and the reported sequence of alanine dehydrogenase from Bacillus but Ths did not have any alanine dehydrogenase activity.  相似文献   

10.
The characteristics of soluble and membrane-bound glutamine synthetase (GS) from Rhodospirillum rubrum were compared with those of the enzyme located in situ (measured in detergent-treated cells). The results suggest that in vivo GS may be associated with, or bound to, the chromatophore membranes. GS was found to reversibly associate and dissociate from purified chromatophores as a function of the ionic strength of the buffer or the Mg2+ concentration. Solubilized GS was purified to homogeneity and found to be similar to the GS of enteric bacteria in that its molecular weight was about 600,000 and it had one type of subunit of 51,000 molecular weight. Removal of GS from the membrane had no effect on the Km values for the substrates of the biosynthetic reaction, but it did have a substantial effect on both its Mg2+ requirement (the Km increased 10-fold) and the sensitivity of the gamma-glutamyl transferase reaction to the inhibitor methionine sulfoximine (the I0.5 decreased from 1,500 to 60 microM). Both observations suggest that the active site of GS is influenced by its association with the membrane. GS activity was shown to respond to NH4+, phosphodiesterase, Mg2+, and adenylylation cofactors in a manner identical to that of the GS of the coliform bacteria, suggesting that the former may also respond to adenylylation and deadenylylation. Finally, R. rubrum GS was also inhibited by NH4+ by a newly observed, as yet undefined, system.  相似文献   

11.
A rat brain cytosolic 3,5,3'-triiodo-L-thyronine-(T3)-binding protein (CTBP) was purified using, successively, carboxymethyl-Sephadex, DEAE-Spherodex, T3-Sepharose-4B affinity chromatography and Sephacryl S-200. The molecular mass determined by SDS/PAGE wa 58 kDa. The binding characteristics determined by Scatchard analysis revealed a single class of binding sites with a Ka of 1.56 nM-1 and a maximal binding capacity of 7500 nmol T3/g protein. The relative binding affinities of iodothyronine analogues were D-T3 > L-T3 > L-T4 > 3,3'-5-triiodothyroacetic acid > reverse T3. The optimum pH for binding was 7.5. Purified brain CTBP was reversibly inactivated by charcoal. NADPH, NADP and thioredoxin restored binding activity to a level higher than that of the control; this effect was concentration dependent. Maximal activation was observed at 25 nM NADPH. NADP was effective only in the presence of 1 mM dithiothreitol; maximal activity was obtained at 10 nM NADP. At concentrations higher than 50 nM NADP, the binding gradually decreased. Thioredoxin in the presence of 1 mM dithiothreitol activated CTBP; maximal binding was obtained with 4 microM thioredoxin. In the presence of NADPH, NADP or thioredoxin the maximal binding capacity increased 2-4 times and the Ka was 2.6 nM-1. These results show that the activity of purified cytosolic brain T3-binding protein may be modulated by NADPH, NADP or thioredoxin.  相似文献   

12.
1. Changes in the absorption spectrum induced by 10-mus flashes and continuous light of various intensities were studied in whole cells of Rhodospirillum rubrum in the presence and absence of 2-n-heptyl-4-hydroxyquinoline-N-oxide(HOQNO) and antimycin A. 2. Three cytochromes, c-420 (cytochrome c2), c-560 (cytochrome b) and c-428 were photoactive and gamma and alpha peaks at 420 and 550, 428 and 560, and 428 and 551 nm, respectively; they were photooxidized following the flash with half times of 0.3, 0.6 and 7 ms in the approximate ratios of 1/100, 1/300 and 1/1000 (cytochrome oxidized/antenna chlorophyll) and became reduced with half times of 12 ms, 60 ms and 0.7 s, respectively. c-428 and c-560 have not been distinguished before. 3. From a detailed analysis of the kinetics of P+ (oxidized reaction center chlorophyll) and the cytochromes, we conclude that 5% of the P+ (P2+) oxidizes c-428, whereas the remaining 95% of P+ (P1+) oxidizes c-420. At actinic light intensities low enough to keep c-420 fully reduced, approx. 4-5% of P becomes oxidized, accompanied by all c-428. The P2+ -P2 difference spectrum induced by this weak light is, when corrected for a shift to longer wavelengths of the bacteriochlorophyll absorption band at 878 nm, identical to the difference spectrum caused by the photooxidation of the remaining P1. At low flash intensity, c-428 becomes preferentially photooxidized, which suggests that the reaction centers where c-428 functions as a secondary donor contain much more antenna pigments compared to the centers where c-420 serves this purpose. 4. c+-420 is reduced in a competitive way by reduced c-560 (t 1/2=7 ms), and by an electron donor pool, (t 1/2=15 ms). HOQNO inhibits both pathways; antimycin A only the first. In the presence of HOQNO, c-560 is in the oxidized state in the dark, and is reduced in a light flash (t 1/2=100 ms), indicating that c-560 acts in a cyclic electron transport chain connected to P1. 5. The ratio of numbers of molecules P1 and antenna bacteriochlorophyll, transferring excitation energy to P1, is P1/bacteriochlorophyll1=1/30 P2: bacteriochlorophyll2=1/300; c-420/P1=1:2; c-560/P1=1/6; C-428/P2=1/1; bacteriochlorophyll2=7:3. If P2 is oxidized, excitation energy is transferred from bacteriochlorophyll2 to bacteriochlorophyll1.  相似文献   

13.
1. A cold-stable oligomycin-sensitive F0F1 ATPase complex from chromatophores of Rhodospirillum rubrum FR 1 was solubilized by Triton X-100 and purified by gel filtration. 2. The F0F1 complex is resolved by sodium dodecyl sulfate electrophoresis into 14 polypeptides with approximate molecular weights in the range of 58000--6800; five of these polypeptides are derived from the F1 moiety of the complex which carries the catalytic centers of the enzyme. 3. The purified F0F1 complex is homogeneous according to analytical ultracentrifugation and isoelectric focusing. 4. The molecular weight as determined by gel filtration is about 480 000 +/- 30 000. S020,w is 1.45 +/- 0.1 S and the pI is 5.4. 5. The amino acid composition of the F0F1 complex is compared with the data obtained for the F1 moiety of the enzyme. 6. Quantitative data on the sensitivity to N,N'-dicyclohexyl-carbodiimide as well as kinetic parameters, regarding substrate specificity and dependence of ATPase activity on divalent cations, are reported.  相似文献   

14.
The dI component of transhydrogenase binds NAD+ and NADH. A mobile loop region of dI plays an important role in the nucleotide binding process, and mutations in this region result in impaired hydride transfer in the complete enzyme. We have previously employed one-dimensional 1H-NMR spectroscopy to study wild-type and mutant dI proteins of Rhodospirillum rubrum and the effects of nucleotide binding. Here, we utilise two- and three-dimensional NMR experiments to assign the signals from virtually all of the backbone and side-chain protons of the loop residues. The mobile loop region encompasses 17 residues: Asp223-Met239. The assignments also provide a much strengthened basis for interpreting the structural changes occurring upon nucleotide binding, when the loop closes down onto the surface of the protein and loses mobility. The role of the mobile loop region in catalysis is discussed with particular reference to a newly-developed model of the dI protein, based on its homology with alanine dehydrogenase.  相似文献   

15.
An additional component in the purified core light-harvesting complex (LH1) from wild-type purple photosynthetic bacterium Rhodospirillum rubrum has been identified as an oxidized species of alpha-polypeptide by MALDI-TOF mass spectrometry. This component appears as a slightly earlier-eluting peak in the RP-HPLC chromatogram compared with the authentic alpha-polypeptide. The oxidation site has been determined to be the N-terminal methionine residue by high-resolution NMR spectroscopy, where the methionine is oxidized to methionine sulfoxide in a diastereoisomeric form. Interconversion between the oxidized and authentic alpha-polypeptides has been confirmed by selective oxidation and reduction. The oxidative modification of methionine is shown to have discernible effects on the ability to form B820 subunit with beta-polypeptide and bacteriochlorophyll a, and on the stability of the reconstituted B820 subunit. Both the ability and the stability for the samples using the oxidized alpha-polypeptide are moderately reduced, indicating that the oxidation-induced conformational change in the N-terminal domain of alpha-polypeptide may affect the pigment-binding environment through a long-range interaction. The MALDI-TOF mass results also reveal that the N-terminus of alpha-polypeptide is formylated and no phosphorylation has occurred in this polypeptide.  相似文献   

16.
1. In the light a transmembrane electrical potential of 100 mV has been estimated to occur in chromatophores from Rhodospirillum rubrum. The potential was determined by measuring the steady-state distribution of the permeant SCN- across the chromatophore membrane using a flow dialysis technique. The potential was not observed in the dark, nor in the presence of antimycin. It was dissipated on the addition of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The potential was reduced by between 15 and 20 mV when ADP and Pi were added. Hydrolysis of ATP by the chromatophores generated a membrane potential of about 80 mV. 2. Using a flow dialysis technique light-dependent uptake of methylamine was observed only in the presence of concentrations of SCN- that were 500-fold higher than were used to measure the membrane potential. It is concluded that the pH gradient across the illuminated chromatophore membrane is insignificant except in the presence of relatively high concentrations of a permeant anion like thiocyanate. Further evidence that a negligible pH gradient was generated by the chromatophores is that addition of K+ and nigericin to illuminated chromatophores did not stimulate uptake of SCN-. 3. In the light of chromatophores established and maintained a phosphorylation potential of up to 14 kcal/mol. If a phosphorylation potential of this magnitude is to be poised against a proton-motive force that comprises solely a membrane potential of approx. 100 mV, then at least five protons must be translocated for each ATP synthesised via a chemiosmotic mechanism.  相似文献   

17.
1. The NADPH-oxidizing activity of a 100 000 × g particulate fraction of the postnuclear supernatant obtained from guinea-pig phagocytosing polymorphonuclear leucocytes has been assayed by simultaneous determination of oxygen consumption, NADPH oxidation and O?2 generation at pH 5.5 and 7.0 and with 0.15 mM and 1 mM NADPH.2. The measurements of oxygen consumption and NADPH oxidation gave comparable results. The stoichiometry between the oxygen consumed and the NADPH oxidized was 1 : 1.3. A markedly lower enzymatic activity was observed, under all the experimental conditions used, when the O?2 generation assay was employed as compared to the assays of oxygen uptake and NADPH oxidation.4. The explanation of this difference came from the analysis of the effect of superoxide dismutase and of cytochrome c which removes O?2 formed during the oxidation of NADPH.5. Both superoxide dismutase and cytochrome c inhibited the NADPH-oxidizing reaction at pH 5.5. The inhibition was higher with 1 mM NADPH than with 0.15 mM NADPH.6. Both superoxide dismutase and cytochrome c inhibited the NADPH-oxidizing reaction at pH 7.0 with 1 mM NADPH but less than at pH 5.5 with 1 mM NADPH.7. The effect of superoxide dismutase at pH 7.0 with 0.15 mM NADPH was negligible.8. In all instances the inhibitory effect of cytochrome c was greater than that of superoxide dismutase.9. It was concluded that the NADPH-oxidizing reaction studied here is made up of three components: an enzymatic univalent reduction of O2; an enzymatic, apparently non-univalent, O2 reduction and a non-enzymatic chain reaction.10. These three components are variably and independently affected by the experimental conditions used. For example, the chain reaction is freely operative at pH 5.5 with 1 mM NADPH but is almost absent at pH 7.0 with 0.15 mM NADPH, whereas the univalent reduction of O2 is optimal at pH 7.0 with 1 mM NADPH.  相似文献   

18.
19.
Glutamine synthetase from Rhodospirillum rubrum can be isolated in two forms, with low and high activity, respectively, depending on the concentration of combined nitrogen in the medium before harvest. The two forms have been studied with respect to their dependence on Mn2+ and Mg2+ in both the transferase and the biosynthetic assay. There is no difference in pH optimum between the forms in the biosynthetic assay. In addition the pH-optima for the two cations studied are very close, 7.4 (Mg2+) and 7.2 (Mn2+). It also shows that the activity of the low-activity form is higher than that of the high-activity form in the Mn(2+)-dependent biosynthetic assay. The two forms of Rsp. rubrum glutamine synthetase have also been studied with respect to their sensitivity towards feed-back effectors. In the transferase assay both forms are inhibited to essentially the same degree by alanine, glycine, histidine, AMP, CTP and UTP, CTP being the most effective of the nucleotides and of the amino acids alanine causes the highest inhibition. In the biosynthetic assay these effectors show different degrees of inhibition on the two different forms; the high-activity form being the most sensitive. The results are discussed in relation to properties of glutamine synthetase from Escherichia coli and other phototropic bacteria in which regulation of glutamine synthetase is known to be due to adenylylation. It is also shown that the low-activity form of Rsp. rubrum glutamine synthetase can be activated in crude extracts in a reaction that is inhibited by glutamine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号