首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner.  相似文献   

2.
Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS) production and resulted in damage and death of the cone and pigment cells in Drosophila eyes. Since ROS-induced oxidative damage to the cells is one of the primary causes of aging, in this study, we examined the effects of heterozygous dOpa1 mutation on the lifespan. We found that heterozygous dOpa1 mutation caused shortened lifespan, increased susceptibility to oxidative stress and elevated production of ROS in the whole Drosophila. Antioxidant treatment partially restored lifespan in the male dOpa1 mutants, but had no effects in the females. Heterozygous dOpa1 mutation caused an impairment of respiratory chain complex activities, especially complexes II and III, and reversible decreased aconitase activity. Heterozygous dOpa1 mutation is also associated with irregular and dysmorphic mitochondria in the muscle. Our results, for the first time, demonstrate the important role of OPA1 in aging and lifespan, which is most likely mediated through augmented ROS production.  相似文献   

3.
Drosophila has long been used as model system to study development, mainly due to the ease with which it is genetically tractable. Over the years, a plethora of mutant strains and technical tricks have been developed to allow sophisticated questions to be asked and answered in a reasonable amount of time. Fundamental insight into the interplay of components of all known major signaling pathways has been obtained in forward and reverse genetic Drosophila studies. The fly eye has proven to be exceptionally well suited for mutational analysis, since, under laboratory conditions, flies can survive without functional eyes. Furthermore, the surface of the insect eye is composed of some 800 individual unit eyes (facets or ommatidia) that form a regular, smooth surface when looked at under a dissecting microscope. Thus, it is easy to see whether a mutation might affect eye development or growth by externally looking for the loss of the smooth surface (''rough eye'' phenotype; Fig. 1) or overall eye size, respectively (for examples of screens based on external eye morphology see e.g.1). Subsequent detailed analyses of eye phenotypes require fixation, plastic embedding and thin-sectioning of adult eyes.The Drosophila eye develops from the so-called eye imaginal disc, a bag of epithelial cells that proliferate and differentiate during larval and pupal stages (for review see e.g. 2). Each ommatidium consists of 20 cells, including eight photoreceptors (PR or R-cells; Fig. 2), four lens-secreting cone cells, pigment cells (''hexagon'' around R-cell cluster) and a bristle. The photoreceptors of each ommatidium, most easily identified by their light sensitive organelles, the rhabdomeres, are organized in a trapezoid made up of the six "outer" (R1-6) and two "inner" photoreceptors (R7/8; R8 [Fig. 2] is underneath R7 and thus only seen in sections from deeper areas of the eye). The trapezoid of each facet is precisely aligned with those of its neighbors and the overall anteroposterior and dorsoventral axes of the eye (Fig. 3A). In particular, the ommatidia of the dorsal and ventral (black and red arrows, respectively) halves of the eye are mirror images of each other and correspond to two chiral forms established during planar cell polarity signaling (for review see e.g. 3).The method to generate semi-thin eye sections (such as those presented in Fig. 3) described here is slightly modified from the one originally described by Tomlinson and Ready4. It allows the morphological analysis of all cells except for the transparent cone cells. In addition, the pigment of R-cells (blue arrowheads in Fig. 2 and 3) can be used as a cell-autonomous marker for the genotype of a R-cell, thus genetic requirements of genes in a subset of R-cells can readily be determined5,6.  相似文献   

4.
Since the early days of mitochondrial medicine, it has been clear that optic atrophy is a very common and sometimes the singular pathological feature in mitochondrial disorders. The first point mutation of mitochondrial DNA (mtDNA) associated with the maternally inherited blinding disorder, Leber's hereditary optic neuropathy (LHON), was recognized in 1988. In 2000, the other blinding disorder, dominant optic atrophy (DOA) Kjer type, was found associated with mutations in the nuclear gene OPA1 that encodes a mitochondrial protein. Besides these two non-syndromic optic neuropathies, optic atrophy is a prominent feature in many other neurodegenerative diseases that are now recognized as due to primary mitochondrial dysfunction.We will consider mtDNA based syndromes such as LHON/dystonia/Mitochondrial Encephalomyopahty Lactic Acidosis Stroke-like (MELAS)/Leigh overlapping syndrome, or nuclear based diseases such as Friedreich ataxia (mutations in FXN gene), deafness-dystonia-optic atrophy (Mohr-Tranebjerg) syndrome (mutations in TIMM8A), complicated hereditary spastic paraplegia (mutations in SPG7), DOA “plus” syndromes (mutations in OPA1), Charcot-Marie-Tooth type 2A (CMT2A) with optic atrophy or hereditary motor and sensory neuropathy type VI (HMSN VI) (mutations in MFN2), and Costeff syndrome and DOA with cataract (mutations in OPA3). Thus, genetic errors in both nuclear and mitochondrial genomes often lead to retinal ganglion cell death, a specific target for mitochondrial mediated neurodegeneration. Many mechanisms have been studied and proposed as the bases for the pathogenesis of mitochondrial optic neuropathies including bioenergetic failure, oxidative stress, glutamate toxicity, abnormal mitochondrial dynamics and axonal transport, and susceptibility to apoptosis.  相似文献   

5.
While many patients with hereditary optic neuropathies are caused by mitochondrial DNA (mtDNA) mutations of Leber’s hereditary optic neuropathy (LHON), a significant proportion of them does not have mtDNA mutation and is caused by mutations in genes of the nuclear genome. In this study, we investigated whether the OPA1 gene, which is a pathogenic gene for autosomal dominant optic atrophy (ADOA), is frequently mutated in these patients. We sequenced all 29 exons of the OPA1 gene in 105 Han Chinese patients with suspected LHON. mtDNA copy number was quantified in blood samples from patients with and without OPA1 mutation and compared to healthy controls. In silico program-affiliated prediction, evolutionary conservation analysis, and in vitro cellular assays were performed to show the potential pathogenicity of the mutations. We identified nine OPA1 mutations in eight patients; six of them are located in exons and three are located in splicing sites. Mutation c.1172T?>?G has not been reported before. When we combined our data with 193 reported Han Chinese patients with optic neuropathy and compared to the available data of 4327 East Asians by the Exome Aggregation Consortium (ExAC), we found a significant enrichment of potentially pathogenic OPA1 mutations in Chinese patients. Cellular assays for OPA1 mutants c.869G?>?A and c.2708_2711del showed abnormalities in OPA1 isoforms, mitochondrial morphology, and cellular reactive oxygen species (ROS) level. Our results indicated that screening OPA1 mutation is needed for clinical diagnosis of patients with suspected optic neuropathy.  相似文献   

6.
Autosomal dominant optic atrophy (OPA1) maps to Chromosome (Chr) 3q28, and the disease interval has been refined to within 1.4 cM, flanked by the markers D3S3669 and D3S3562. HRY, the human homolog of the Drosophila segmentation gene, hairy, maps by in situ hybridization to the chromosomal region 3q28-q29. We screened for mutations in HRY in 36 patients from 18 pedigrees with dominant optic atrophy and a group of normal control individuals. Heteroduplex mutation analysis and direct sequencing of all four coding exons and one upstream putative untranslated exon were performed. No disease-associated sequence alterations were identified. A polymorphism in the untranslated region of exon 2 was found, with four alleles. PCR amplification of this part of exon 2 in four of the pedigrees affected by autosomal dominant optic atrophy mapping to chromosome 3q, followed by haplotype analysis, showed recombination between HRY and OPA1 in one pedigree. This allows us to genetically position HRY in relation to known microsatellite markers in the region, placing HRY telomeric to marker D3S3562 and centromeric to D3S1305. This is outside the published critical disease interval for dominant optic atrophy. We have, therefore, excluded HRY as the gene for dominant optic atrophy by sequence analysis, mapped it genetically, and identified a polymorphism in our population. Received: 27 February 1998 / Accepted: 8 June 1998  相似文献   

7.
OPA1 is highly expressed in retina and optic nerve. OPA1 mutations were first identified in patients with non-syndromic autosomal dominant optic atrophy. Recently, OPA1 mutations were detected in a multisystemic disorder which has optic atrophy as the core clinical feature and multiple mitochondrial DNA (mtDNA) deletions in muscle. We report a patient with a multisystemic disorder and multiple muscle mtDNA deletions, carrying an in-frame deletion in OPA1 in the absence of optic atrophy. This patient provides evidence that optic atrophy is not the main clinical manifestation of OPA1-related disorders. OPA1 analysis should be considered in mitochondrial disorders despite the lack of optic atrophy.  相似文献   

8.
The OPA1 gene, encoding a dynamin-like mitochondrial GTPase, is involved in autosomal dominant optic atrophy (ADOA, OMIM #165500). ADOA, also known as Kjer's optic atrophy, affects retinal ganglion cells and the axons forming the optic nerve, leading to progressive visual loss. OPA1 gene sequencing in patients with hereditary optic neuropathies indicates that the clinical spectrum of ADOA is larger than previously thought. Specific OPA1 mutations are responsible for several distinct clinical presentations, such as ADOA with deafness (ADOAD), and severe multi-systemic syndromes, the so-called “ADOA plus” disorders, which involve neurological and neuromuscular symptoms similar to those due to mitochondrial oxidative phosphorylation defects or mitochondrial DNA instability. The study of the various clinical presentations of ADOA in conjunction with the investigation of OPA1 mutations in fibroblasts from patients with optic atrophy provides new insights into the pathophysiological mechanisms of the disease while underscoring the multiple physiological roles played by OPA1 in energetic metabolism, mitochondrial structure and maintenance, and cell death. Finally, OPA1 represents an important new paradigm for emerging neurodegenerative diseases affecting mitochondrial structure, plasticity and functions.  相似文献   

9.
Opa1 catalyzes fusion of inner mitochondrial membranes and formation of the cristae. OPA1 mutations in humans lead to autosomal dominant optic atrophy. OPA1 knockout mice lose viability around embryonic day 9 from unknown reasons, indicating that OPA1 is essential for embryonic development. Zebrafish are an attractive model for studying vertebrate development and have been used for many years to describe developmental events that are difficult or impractical to view in mammalian models. In this study, Opa1 was successfully depleted in zebrafish embryos using antisense morpholinos, which resulted in disrupted mitochondrial morphology. Phenotypically, these embryos exhibited abnormal blood circulation and heart defects, as well as small eyes and small pectoral fin buds. Additionally, startle response was reduced and locomotor activity was impaired. Furthermore, Opa1 depletion caused bioenergetic defects, without impairing mitochondrial efficiency. In response to mitochondrial dysfunction, a transient upregulation of the master regulator of mitochondrial biogenesis, pgc1a, was observed. These results not only reveal a new Opa1-associated phenotype in a vertebrate model system, but also further elucidates the absolute requirement of Opa1 for successful vertebrate development.  相似文献   

10.
Optic Atrophy 1 (OPA1) gene mutations cause diseases ranging from isolated dominant optic atrophy (DOA) to various multisystemic disorders. OPA1, a large GTPase belonging to the dynamin family, is involved in mitochondrial network dynamics. The majority of OPA1 mutations encodes truncated forms of the protein and causes DOA through haploinsufficiency, whereas missense OPA1 mutations are predicted to cause disease through deleterious dominant‐negative mechanisms. We used 3D imaging and biochemical analysis to explore autophagy and mitophagy in fibroblasts from seven patients harbouring OPA1 mutations. We report new genotype–phenotype correlations between various types of OPA1 mutation and mitophagy. Fibroblasts bearing dominant‐negative OPA1 mutations showed increased autophagy and mitophagy in response to uncoupled oxidative phosphorylation. In contrast, OPA1 haploinsufficiency was correlated with a substantial reduction in mitochondrial turnover and autophagy, unless subjected to experimental mitochondrial injury. Our results indicate distinct alterations of mitochondrial physiology and turnover in cells with OPA1 mutations, suggesting that the level and profile of OPA1 may regulate the rate of mitophagy.  相似文献   

11.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that causes progressive muscular weakness. Fused in Sarcoma (FUS) that has been identified in familial ALS is an RNA binding protein that is normally localized in the nucleus. However, its function in vivo is not fully understood. Drosophila has Cabeza (Caz) as a FUS homologue and specific knockdown of Caz in the eye imaginal disc and pupal retina using a GMR-GAL4 driver was here found to induce an abnormal morphology of the adult compound eyes, a rough eye phenotype. This was partially suppressed by expression of the apoptosis inhibitor P35. Knockdown of Caz exerted no apparent effect on differentiation of photoreceptor cells. However, immunostaining with an antibody to Cut that marks cone cells revealed fusion of these and ommatidia of pupal retinae. These results indicate that Caz knockdown induces apoptosis and also inhibits differentiation of cone cells, resulting in abnormal eye morphology in adults. Mutation in EGFR pathway-related genes, such as rhomboid-1, rhomboid-3 and mirror suppressed the rough eye phenotype induced by Caz knockdown. Moreover, the rhomboid-1 mutation rescued the fusion of cone cells and ommatidia observed in Caz knockdown flies. The results suggest that Caz negatively regulates the EGFR signaling pathway required for determination of cone cell fate in Drosophila.  相似文献   

12.
The family of diacylglycerol kinases (DAGKs) is known to play an important role in signal transduction linked to phospholipid turnover. In the fruitfly Drosophila melanogaster, a human DAGK ortholog, DGK2, was shown to underlie the phenotype of the visual mutant retinal degeneration A (rdgA). Previously, the gene encoding a novel member of the human DAGK family, termed DAGK3, was cloned and demonstrated to be abundantly expressed in the human retina. Based on these findings we reasoned that DAGK3 might be an excellent candidate gene for a human eye disease. In the present study, we report the genomic organization of the human DAGK3 gene, which spans over 30 kb of genomic DNA interrupted by 23 introns. In addition, we have mapped the gene locus by fluorescence in situ hybridization to 3q27–28, overlapping the chromosomal region known to contain the gene underlying dominant optic atrophy (OPA1), the most common form of hereditary atrophy of the optic nerve. Mutational analysis of the entire coding region of DAGK3 in 19 unrelated German OPA1 patients has not revealed any disease-causing mutations, therefore excluding DAGK3 as a major cause underlying OPA1. Received: 24 August 1998 / Accepted: 13 October 1998  相似文献   

13.
Proteasome-dependent and autophagy-mediated degradation of eukaryotic cellular proteins represent the two major proteostatic mechanisms that are critically implicated in a number of signaling pathways and cellular processes. Deregulation of functions engaged in protein elimination frequently leads to development of morbid states and diseases. In this context, and through the utilization of GAL4/UAS genetic tool, we herein examined the in vivo contribution of proteasome and autophagy systems in Drosophila eye and wing morphogenesis. By exploiting the ability of GAL4-ninaE. GMR and P{GawB}BxMS1096 genetic drivers to be strongly and preferentially expressed in the eye and wing discs, respectively, we proved that proteasomal integrity and ubiquitination proficiency essentially control fly’s eye and wing development. Indeed, subunit- and regulator-specific patterns of severe organ dysmorphia were obtained after the RNAi-induced downregulation of critical proteasome components (Rpn1, Rpn2, α5, β5 and β6) or distinct protein-ubiquitin conjugators (UbcD6, but not UbcD1 and UbcD4). Proteasome deficient eyes presented with either rough phenotypes or strongly dysmorphic shapes, while transgenic mutant wings were severely folded and carried blistered structures together with loss of vein differentiation. Moreover, transgenic fly eyes overexpressing the UBP2-yeast deubiquitinase enzyme were characterized by an eyeless-like phenotype. Therefore, the proteasome/ubiquitin proteolytic activities are undoubtedly required for the normal course of eye and wing development. In contrast, the RNAi-mediated downregulation of critical Atg (1, 4, 7, 9 and 18) autophagic proteins revealed their non-essential, or redundant, functional roles in Drosophila eye and wing formation under physiological growth conditions, since their reduced expression levels could only marginally disturb wing’s, but not eye’s, morphogenetic organization and architecture. However, Atg9 proved indispensable for the maintenance of structural integrity of adult wings in aged flies. In toto, our findings clearly demonstrate the gene-specific fundamental contribution of proteasome, but not autophagy, in invertebrate eye and wing organ development.  相似文献   

14.
Transglutaminases (TGs) catalyze the cross-linking of proteins and are involved in various biological processes in mammals. In invertebrates, except for the involvement in the hemolymph clotting, the functions of TG have not been revealed. Drosophila has a single TG gene (CG7356), from which two kinds of mRNAs (dTG-RA and dTG-RB) are formed. RT-PCR analyses indicated that both dTGs-RA and -RB are synthesized in all the developmental stages tested. To reveal the roles of dTG during the development, we examined a phenotype induced through the ectopic expression of dTG by using a GAL4-UAS targeted expression system. Over-expression of dTG-A in the eye imaginal disc of larva induced a rough eye phenotype in adult compound eyes. Co-expression of P35, an inhibitor of apoptosis, suppressed the rough eye phenotype, suggesting that the rough eye phenotype induced by the over-expression of dTG-A in the eye imaginal disc is due to the occurrence of apoptosis. The rough eye phenotype induced by the over-expression of dTG-A was suppressed by the crossing with mutant fly lines lacking Drosophila JNK gene basket (bsk) or Drosophila JNKK gene hemipterous. FLP-out experiments using an enhancer trap line showed that the over-expression of dTG-A in the eye imaginal disc increased the puckered enhancer activity, a reporter of Bsk activity. These results suggested that the rough eye phenotype induced by the over-expression of dTG-A is related to an enhancement of JNK signaling pathway.  相似文献   

15.
Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1enu/+ mice show a slow progressive loss of RGCs, activation of astroglia and microglia, and pronounced mitochondrial fission in optic nerve heads as found by electron tomography. Expression of NMDA receptors (NR1, 2A, and 2B) in the retina of Opa1enu/+ mice was significantly increased as determined by western blot and immunohistochemistry. Superoxide dismutase 2 (SOD2) expression was significantly decreased, the apoptotic pathway was activated as Bax was increased, and phosphorylated Bad and BcL-xL were decreased. Our results conclusively demonstrate that not only glutamate excitotoxicity and/or oxidative stress alters mitochondrial fission/fusion, but that an imbalance in mitochondrial fission/fusion in turn leads to NMDA receptor upregulation and oxidative stress. Therefore, we propose a new vicious cycle involved in neurodegeneration that includes glutamate excitotoxicity, oxidative stress, and mitochondrial dynamics.  相似文献   

16.
The endoplasmic reticulum (ER) is a highly dynamic organelle that plays a critical role in many cellular processes. Abnormal ER morphology is associated with some human diseases, although little is known regarding how ER morphology is regulated. Using a forward genetic screen to identify genes that regulated ER morphology in Drosophila, we identified a mutant of Sec22, the orthologs of which in yeast, plants, and humans are required for ER to Golgi trafficking. However, the physiological function of Sec22 has not been previously investigated in animal development. A loss of Sec22 resulted in ER proliferation and expansion, enlargement of late endosomes, and abnormal Golgi morphology in mutant larvae fat body cells. However, starvation-induced autophagy was not affected by a loss of Sec22. Mosaic analysis of the eye revealed that Sec22 was required for photoreceptor morphogenesis. In Sec22 mutant photoreceptor cells, the ER was highly expanded and gradually lost normal morphology with aging. The rhabdomeres in mutants were small and sometimes fused with each other. The morphology of Sec22 mutant eyes resembled the eye morphology of flies with overexpressed eyc (eyes closed). eyc encodes for a Drosophila p47 protein that is required for membrane fusion. A loss of Syntaxin5 (Syx5), encoding for a t-SNARE on Golgi, also phenocopied the Sec22 mutant. Sec22 formed complexes with Syx5 and Eyc. Thus, we propose that appropriate trafficking between the ER and Golgi is required for maintaining ER morphology and for Drosophila eye morphogenesis.  相似文献   

17.
Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics.  相似文献   

18.
Cuticular wax is a complex mixture of very-long-chain fatty acid derivatives. The wax on the surface of plants serves as a protective barrier to reduce non-stomatal water loss and environmental damage. However, the loss of wax may lead to a glossy phenotype, which is an favorable trait in leafy vegetables. The mechanism of glossy mutants in non-heading Chinese cabbage (Brassica rapa L. var. communis) has not been studied yet. In this study, scanning electron microscopy (SEM) showed that the cuticular wax on the leaves and stem of a glossy mutant was dramatically reduced compared with that of the wild-type plant. Transmission electron microscopy (TEM) revealed that the cuticle ultrastructure of glossy mutant leaf and stem were altered when compared with the wild type. A cuticle wax analysis showed the total wax content of leaves, as well as alkanes, ketones and alcohols, was decreased. A genetic analysis indicated that the glossy phenotype was controlled by a single gene. Based on a homology analysis, the Brcer1 gene was identified as the candidate gene controlling the glossy phenotype. In the glossy mutant, a 39-bp deletion leads to an mRNA disruption and reduces the expression of the BrCER1 gene. Sequence analysis showed that a loss of function mutation in the Brcer1 gene was different from that of Cgl1, which was previously shown to be responsible for the glossy phenotype in B. oleracea, showing typical parallel selection. These findings provide a better understanding of the cuticular wax biosynthesis pathway and offer important information for molecular-assisted breeding of non-heading Chinese cabbage (B. rapa L. var. communis).  相似文献   

19.
Ablation of the mitochondrial fusion and endoplasmic reticulum (ER)–tethering protein Mfn2 causes ER stress, but whether this is just an epiphenomenon of mitochondrial dysfunction or a contributor to the phenotypes in mitofusin (Mfn)-depleted Drosophila melanogaster is unclear. In this paper, we show that reduction of ER dysfunction ameliorates the functional and developmental defects of flies lacking the single Mfn mitochondrial assembly regulatory factor (Marf). Ubiquitous or neuron- and muscle-specific Marf ablation was lethal, altering mitochondrial and ER morphology and triggering ER stress that was conversely absent in flies lacking the fusion protein optic atrophy 1. Expression of Mfn2 and ER stress reduction in flies lacking Marf corrected ER shape, attenuating the developmental and motor defects. Thus, ER stress is a targetable pathogenetic component of the phenotypes caused by Drosophila Mfn ablation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号