首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report, we introduce the use of DNA-cellulose chromatography for evaluating the strength of binding of histones to DNA under a variety of conditions. We have found that histones added directly to DNA-cellulose at physiological salt concentrations bind relatively weakly, with all histones eluting together at about 0.5 M NaCl when a salt gradient is applied. However, much tighter binding of the four nucleosomal histones to DNA-cellulose is obtained if gradual histone-DNA reconstitution conditions are used. In this case, the binding of histones H2A, H2B, H3, and H4 to DNA-cellulose closely resembles their binding to native chromatin. The nativeness of the binding is indicated both by the distinctive sodium chloride elution profile of these histones from DNA-cellulose and by their relative resistance to trypsin digestion when DNA-bound. The binding to DNA-cellulose of histones H2A, H2B, H3, and H4, which have had the first 20 to 30 amino acid residues removed from their NH2 termini, is indistinguishable from the binding to DNA-cellulose of the same intact histones, as judged by their salt elution profile. Thus, even though the NH2 termini contain 40 to 50% of the positively charged amino acid residues (thought to interact with the DNA backbone), a major contribution to the DNA binding comes from the remainder of the histone molecule. Finally, we have discovered that histones can form a "nucleosome-like" complex on single-stranded DNA. The same complex does not appear to form on RNA. Histones H3 and H4 play a predominant role in organizing this histone complex on single-stranded DNA, as they do on double-stranded DNA in normal nucleosomes. We suggest that, in the cell nucleus, nucleosomal structures may form transiently on single strands of DNA, as DNA and RNA polymerases traverse DNA packaged by histones.  相似文献   

2.
Complexes between the four calf-thymus histones (H2A, H2B, H3 and H4) and colE1-plasmid DNA have been reconstituted using the procedure of Oudet et al. ((1975), Cell 4, 281-300). The sedimentation rates of the complexes formed were studied under a variety of conditions. In 0.4 MNaCL, 0.1 M Tris pH 7.50, 0.01 M EDTA and 0.02 M NaHSO3, the final dialy-sis-solvent in the reconstitution procedure, the sedimentation coefficients s23 were found to increase when the complexes were reconstituted at increasing histone to DNA ratios. True plateau regions were reached in the case of the relaxed circular and linear forms of the plasmid DNA. The sedimenting boundaries observed for the complexes at saturation are sharp, reflecting a narrow distribution of sedimentation coefficients and a homogeneity of the complex comparable to that of the uncomplexed DNA. Studies of the dependence of s 23 on the concentration of the complex at constant DNA to histones ratio have been undertaken at salt concentrations between 0.4 and 1.5 M NaCL in the above solvent. The formation of the complexes is reversible, at least at the higher ionic strengths. At salt concentrations below 0.36 M the complex precipitates from solution. Omission of histone H4 from the reconstitution mixture abolishes complex formation.  相似文献   

3.
4.
5.
6.
On the binding of tRNA to Escherichia coli RNA polymerase.   总被引:4,自引:0,他引:4  
The fixation of tRNA to Escherichia coli RNA polymerase has been investigated. Bound and free tRNA have been separated and quantified after filtration through cellulose nitrate filters, centrifugation or sucrose gradients or electrophoresis in polyacrylamide gels. We detect no differences between the fixation of E. coli fMet-tRNAfMet, Met-tRNAmMet or uncharged unfractionated tRNA to RNA polymerase. Tight complexes, with a long residence time, are formed between core enzyme and tRNA with a dissociation constant of less than 1 nM. Complexes exist between tRNA and both monomer and dimer forms of the core enzyme. In the monomer complex, one tRNA is bound per alpha 2 beta beta' unit, whereas in the dimer complex only 0.5 tRNA molecule is fixed per alpha 2 beta beta' unit. In contrast to the core enzyme, very little tRNA fixes tightly to the holoenzyme at salt concentrations greater than 80 mM. At lower salt concentrations tRNA fixation results in a loss of sigma subunit from the holo enzyme to the resulting core enzyme where it binds tightly. DNA fixation reduces the binding of tRNA to RNA polymerase and tRNA fixation reduces the binding of DNA. However, binding of DNA to polymerase is not competitive with binding of tRNA, and ternary complexes between RNA polymerase, DNA and tRNA are shown to exist. Our results are discussed in relation to other studies concerning the effects of tRNA upon RNA polymerase.  相似文献   

7.
Salt-induced release of DNA from nucleosome core particles   总被引:8,自引:0,他引:8  
  相似文献   

8.
9.
10.
11.
The linker histones are involved in the salt-dependent folding of the nucleosomes into higher-order chromatin structures. To better understand the mechanism of action of these histones in chromatin, we studied the interactions of the linker histone H1 with DNA at various histone/DNA ratios and at different ionic strengths. In direct competition experiments, we have confirmed the binding of H1 to superhelical DNA in preference to linear or nicked circular DNA forms. We show that the electrophoretic mobility of the H1/supercoiled DNA complex decreases with increasing H1 concentrations and increases with ionic strengths. These results indicate that the interaction of the linker histone H1 with supercoiled DNA results in a soluble binding of H1 with DNA at low H1 or salt concentrations and aggregation at higher H1 concentrations. Moreover, we show that H1 dissociates from the DNA or nucleosomes at high salt concentrations. By the immobilized template pull-down assay, we confirm these data using the physiologically relevant nucleosome array template.  相似文献   

12.
13.
Purification and properties of spleen necrosis virus DNA polymerase.   总被引:10,自引:10,他引:0  
DNA polymerase was purified to apparent electrophoretic homogeneity from virions of spleen necrosis virus (SNV). (SNV is a member of the reticuloendotheliosis group of avian ribodeoxyviruses). The SNV DNA polymerase appears to consist of a single polypeptide with a molecular weight of 68,000. The SNV DNA polymerase has a preference for Mn2+ for DNA synthesis with an RNA template and Mg2+ for DNA synthesis with a deoxyribohomopolymer template. At the optimum concentrations of divalent cation, the relative rates of DNA synthesis by SNV DNA polymerase with different template.primers were similar to the relative rates of DNA synthesis by an avian leukosis virus DNA polymerase, with the exception of a lower relative rate of DNA synthesis by SNV DNA polymerase with SNV RNA. However, in contrast to DNA synthesized by the avian leukosis virus DNA polymerase with a SNV RNA template, DNA synthesized by SNV DNA polymerase with an SNV RNA template did not hybridize to the SNV RNA. SNV DNA polymerase has RNase H activity which is antigenically distinct from the RNase H activity of avian leukosis-sarcoma virus DNA polymerase.  相似文献   

14.
High speed supernatants of Xenopus laevis oocyte nuclei efficiently assemble DNA into nucleosomes in vitro under physiological salt conditions. The assembly activity cofractionates with two histone complexes composed of the acidic protein N1/N2 in complex with histones H3 and H4, and nucleoplasmin in complex with histones H2B and H2A. Both histone complexes have been purified and their nucleosome assembly activities have been analysed separately and in combination. While the histones from the N1/N2 complexes are efficiently transferred to DNA and induce supercoils into relaxed circular plasmid DNA, the nucleoplasmin complexes show no supercoil induction, but can also transfer their histones to DNA. In combination, the complexes act synergistically in supercoil induction thereby increasing the velocity and the number of supercoils induced. Electron microscopic analysis of the reaction products shows fully packaged nucleoprotein structures with the typical nucleosomal appearance resulting in a compaction ratio of 2.8 under low ionic strength conditions. The high mobility group protein HMG-1, which is also present in the soluble nuclear homogenate from X. laevis oocytes, is not required for nucleosome core assembly. Fractionation experiments show that the synergistic effect in the supercoiling reaction can be exerted by histones H3 and H4 bound to DNA and the nucleoplasmin complexes alone. This indicates that it is not the synchronous action of both complexes which is required for nucleosome assembly, but that their cooperative action can be resolved into two steps: deposition of H3 and H4 from the N1/N2 complexes onto the DNA and completion of nucleosome core formation by addition of H2B and H2A from the nucleoplasmin complexes.  相似文献   

15.
By means of indirect immunofluorescence microscopy, we have studied the distribution of RNA polymerase B, of the nucleosomal histones H2b, H3, and H4 and of histone H1, in nuclei of primary spermatocytes of Drosophila hydei. RNA polymerase B and histones, including H1, are found to be present on the loop structures of the Y chromosome. The nucleolus stains only for the histones, but not for RNA polymerase B. Various mutants deficient for some of the loops or altering their morphology, were used to identify the individual chromosomal segments. In growing spermatocytes of the genetic constitution X/0, autosomes and the chromosome X react strongly with antibodies against RNA polymerase B, but not with antibodies against histones.The results suggest that the autosomes, the chromosome X and the Y chromosomal loop structures, with the exception of the nucleolus, are transcribed mostly by RNA polymerase B.  相似文献   

16.
Atypical eukaryotic RNA polymerase activity was demonstrated in nuclei of Crypthecodinium cohnii, a eukaryote devoid of histones. Nuclei were isolated from growing cultures of this dinoflagellate and assayed for endogenous RNA polymerase (EC 2.7.7.6) activity. There was a biphasic response to Mg2+ with optima at approximately 0.01 and 0.02 M MgCl2, but in contrast to other eukaryotic RNA polymerases, this enzyme activity was inhibited by low MnCl2 concentrations. In the presence of 0.01 M MgCL2 the optimum (NH4)2SO4 concentration was 0.025 M, a concentration at which the nuclei were lysed. Incorporation of [3H]UMP into RNA was inhibited by actinomycin D and dependent on the presence of undergraded DNA, and the reaction product was sensitive to ribonuclease and KOH digestion. Omission of one or more ribonucleoside triphosphates greatly reduced the incorporation. Only a slight enhancement of RNA polymerase activity resulted from the addition of various amounts of native and denatured calf thymus DNA. Spermine caused a marked inhibition while spermidine had little effect on RNA synthesis in the nuclei. Under the optimum conditions described in the present paper the nuclei incorporated approximately 3 pmoles of [3H]UMP/microgram DNA at 25 C for 15 min, and approximately 80% of this activity was inhibited by the eukaryotic RNA polymerase II inhibitor, alpha-amanitin (20 micrograms/ml). A unique situation therefore exists in C. cohnii nuclei, in which absence of histones (a prokaryotic trait) is combined with alpha-amanitin-sensitive RNA polymerase activity (a eukaryotic trait).  相似文献   

17.
18.
We have established conditions that stabilize the interaction between RNA polymerase and the rrnB P1 promoter in vitro. The requirements for quantitative complex formation are unusual for E. coli promoters: (1) The inclusion of a competitor is required to allow visualization of a specific footprint. (2) Low salt concentrations are necessary since complex formation is salt sensitive. (3) The addition of the initiating nucleotides ATP and CTP, resulting in a low rate of dinucleotide production, is required in order to prevent dissociation of the complexes. The complex has been examined using DNAase I footprinting and filter binding assays. It is characterized by a region protected from DNAase I cleavage that extends slightly upstream of the region protected by RNA polymerase in most E. coli promoters. We find that only one mole of active RNA polymerase is required per mole of promoter DNA in order to detect filter-bound complexes. Under the conditions measured, the rate of association of RNA polymerase with rrnB P1 is as rapid as, or more rapid than, that reported for any other E. coli or bacteriophage promoter.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号