共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Reactive oxygen species (ROS) are produced in mammalian cells through enzymic and non-enzymic mechanisms. Although some ROS production pathways are needed for specific physiological functions, excessive production is detrimental and is regarded as the basis of numerous neurodegenerative diseases. Among enzymes producing superoxide anions, NADPH oxidase is widespread in mammalian cells and is an important source of ROS in mediating physiological and pathological processes in the cardiovascular and the CNS. ROS production is linked to the alteration of intracellular calcium homeostasis, activation of Ca(2+)-dependent enzymes, alteration of cytoskeletal proteins, and degradation of membrane glycerophospholipids. There is evolving evidence that ROS produced by NADPH oxidase regulate neuronal functions and degrade membrane phospholipids through activation of phospholipases A(2) (PLA(2)). This review is intended to cover recent studies describing ROS generation from NADPH oxidase in the CNS and its downstream activation of PLA(2), namely, the group IV cytosolic cPLA(2) and the group II secretory sPLA(2). A major focus is to elaborate the dual role of NADPH oxidase and PLA(2) in mediating the oxidative and inflammatory responses in neurodegenerative diseases, including cerebral ischemia and Alzheimer's disease. Elucidation of the signaling pathways linking NADPH oxidase with the multiple forms of PLA(2) will be important in understanding the oxidative and degradative mechanisms that underline neuronal damage and glial activation and will facilitate development of therapeutic intervention for prevention and treatment of these and other neurodegenerative diseases. 相似文献
3.
4.
P2X receptors-mediated cytosolic phospholipase A2 activation in primary afferent sensory neurons contributes to neuropathic pain 总被引:1,自引:0,他引:1
Activation of P2X3 and P2X2/3 receptors (P2X3 R/P2X2/3 R), ionotropic ATP receptor subtypes, in primary sensory neurons is involved in neuropathic pain, a debilitating chronic pain that occurs after peripheral nerve injury. However, the underlying mechanisms remain unknown. We investigated the role of cytosolic phospholipase A2 (cPLA2 ) as a downstream molecule that mediates the P2X3 R/P2X2/3 R-dependent neuropathic pain. We found that applying ATP to cultured dorsal root ganglion (DRG) neurons increased the level of Ser505-phosphorylated cPLA2 and caused translocation of Ser505-phosphorylated cPLA2 to the plasma membrane. The ATP-induced cPLA2 activation was inhibited by a selective antagonist of P2X3 R/P2X2/3 R and by a selective inhibitor of cPLA2 . In the DRG in vivo , the number of cPLA2 -activated neurons was strikingly increased after peripheral nerve injury but not after peripheral inflammation produced by complete Freund's adjuvant. Pharmacological blockade of P2X3 R/P2X2/3 R reversed the nerve injury-induced cPLA2 activation in DRG neurons. Moreover, administering the cPLA2 inhibitor near the DRG suppressed nerve injury-induced tactile allodynia, a hallmark of neuropathic pain. Our results suggest that P2X3 R/P2X2/3 R-dependent cPLA2 activity in primary sensory neurons is a key event in neuropathic pain and that cPLA2 might be a potential target for treating neuropathic pain. 相似文献
5.
Chenevier-Gobeaux C Simonneau C Therond P Bonnefont-Rousselot D Poiraudeau S Ekindjian OG Borderie D 《Life sciences》2007,81(13):1050-1058
NADPH oxidase Nox2 is involved in the production of superoxide by rheumatoid synovial cells, constitutively and after pro-inflammatory cytokine treatment. The aims of the study were to evaluate the capacity of these cells to produce the superoxide anion in response to arachidonic acid (AA), and to study the involvement of cytosolic phospholipase A(2) (cPLA(2)) in the cytokine regulation of Nox2. Superoxide production was quantified in synovial cells obtained from six patients with rheumatoid arthritis (RA) and six with osteoarthritis (OA), stimulated with (i) AA, and (ii) PLA(2) inhibitors prior to IL-1beta or TNF-alpha treatment. Total cellular AA concentrations and PLA(2) activity were measured; effects of cytokines and NADPH oxidase inhibitors on the AA-activatable proton channel opening were also studied. Our results demonstrated that AA enhanced superoxide production in RA and OA cells; this production was significantly inhibited by iodonium diphenyl and apocynin. cPLA(2) inhibitors inhibited both IL-1beta and TNF-alpha-induced superoxide production in RA and OA cells. Basal PLA(2) activity was significantly more important in RA cells than in OA cells; PLA(2) activity was increased in IL-1beta and TNF-alpha pre-treated RA cells, and cPLA(2) inhibitors inhibited this activity. Opening of the AA-activatable proton channel was amplified when RA cells were pre-treated with both IL-1beta and TNF-alpha, and iodonium diphenyl and apocynin inhibited these cytokine effects. We concluded that AA is an important cofactor for synovial NADPH oxidase activity. Despite their direct effects on p47-phox phosphorylation, cytokines can also regulate the Nox2 activity though the AA-activatable associated H(+) channel. 相似文献
6.
7.
Yagami T Ueda K Asakura K Nakazato H Hata S Kuroda T Sakaeda T Sakaguchi G Itoh N Hashimoto Y Hori Y 《Journal of neurochemistry》2003,85(3):749-758
Mammalian group IIA secretory phospholipase A2 (sPLA2-IIA) generates prostaglandin D2 (PGD2) and triggers apoptosis in cortical neurons. However, mechanisms of PGD2 generation and apoptosis have not yet been established. Therefore, we examined how second messengers are involved in the sPLA2-IIA-induced neuronal apoptosis in primary cultures of rat cortical neurons. sPLA2-IIA potentiated a marked influx of Ca2+ into neurons before apoptosis. A calcium chelator and a blocker of the L-type voltage-sensitive Ca2+ channel (L-VSCC) prevented neurons from sPLA2-IIA-induced neuronal cell death in a concentration-dependent manner. Furthermore, the L-VSCC blocker ameliorated sPLA2-IIA-induced morphologic alterations and apoptotic features such as condensed chromatin and fragmented DNA. Other blockers of VSCCs such as N type and P/Q types did not affect the neurotoxicity of sPLA2-IIA. Blockers of L-VSCC significantly suppressed sPLA2-IIA-enhanced Ca2+ influx into neurons. Moreover, reactive oxygen species (ROS) were generated prior to apoptosis. Radical scavengers reduced not only ROS generation, but also the sPLA2-IIA-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that sPLA2-IIA potentiates the influx of Ca2+ into neurons via L-VSCC. Furthermore, the present study suggested that eicosanoids and ROS generated during arachidonic acid oxidative metabolism are involved in sPLA2-IIA-induced apoptosis in cooperation with Ca2+. 相似文献
8.
Challenge of protease-activated receptors induces cytosolic Ca(2+) concentration ([Ca(2+) ](c)) increase, mitogen-activated protein kinase activation and reactive oxygen species (ROS) formation with a bandwidth of responses in individual cells. We detected in this study in situ the thrombin-induced [Ca(2+) ](c) rise and ROS formation in dissociated hippocampal astrocytes and neurons in a mixed culture. In identified cells, single cell responses were correlated with extracellular-regulated kinase (ERK)1/2 phosphorylation level. On average, in astrocytes, thrombin induced a transient [Ca(2+) ](c) rise with concentration-dependent increase in amplitude and extrusion rate and high ERK1/2 phosphorylation level. Correlation analysis of [Ca(2+) ](c) response characteristics of single astrocytes reveals that astrocytes with nuclear phosphoERK1/2 localization have a smaller Ca(2+) amplitude and extrusion rate compared with cells with a cytosolic phosphoERK1/2 localization. In naive neurons, without thrombin challenge, variable ERK1/2 phosphorylation patterns are observed. ROS were detected by hydroethidine. Only in neurons with increased ERK1/2 phosphorylation level, we see sustained intracellular rise in fluorescence of the dye lasting over several minutes. ROS formation was abolished by pre-incubation with the NADPH oxidase inhibitor apocynin. Additionally, thrombin induced an immediate, transient hydroethidine fluorescence increase. This was interpreted as NADPH oxidase-mediated O(2) (?-) -release into the extracellular milieu, because it was decreased by pre-incubation with apocynin, and could be eluted by superfusion. In conclusion, the phosphorylation status of ERK1/2 determines the thrombin-dependent [Ca(2+) ](c) increase and ROS formation and, thus, influences the capacity of thrombin to regulate neuroprotection or neurodegeneration. 相似文献
9.
Malgorzata Chalimoniuk Anna Stolecka† Elzbieta Ziemiska‡ Adam Stpie§ Josef Langfort†¶ Joanna B. Strosznajder 《Journal of neurochemistry》2009,110(1):307-317
The study was aimed at investigating in vivo and in vitro the involvement of the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway in MPP+ -induced cytosolic phospholipase A2 (cPLA2 ) activation of dopaminergic neurons. MPP+ activated neuronal nitric oxide synthase (NOS)/soluble guanylyl cyclase/cGMP pathway in mouse midbrain and striatum, and in pheochromocytoma cell line 12 cells, and caused an upward shift in [Ca2+ ]i level in the latter. The activation was accompanied by increases in total and phosphorylated cPLA2 , and increased arachidonic acid release. Effects of selective inhibitors [2-oxo-1,1,1-trifluoro-6,9-12,15-heneicosatetraene (AACOCF3 ), (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2h-pyran-2-one (BEL)] indicated the main impact of cPLA2 on arachidonic acid release in pheochromocytoma cell line 12 cells. Treatment of the cells with the protein kinase inhibitors GF102610x, UO126, and KT5823, and with the nitric oxide synthase (NOS) inhibitor NNLA revealed the involvement of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2), with the possible key role of PKG, in cPLA2 phosphorylation at Ser505. Inhibitors of cPLA2 and PKG increased viability and reduced MPP+ -induced apoptosis of the cells. Our results indicate that the neuronal NOS/cGMP/PKG pathway stimulates cPLA2 phosphorylation at Ser505 by activating PKC and ERK1/2, and suggest that up-regulation of this pathway in experimental models of Parkinson's disease may mediate dopaminergic neuron degeneration and death through activation of cPLA2 . 相似文献
10.
Morioka N Takeda K Kumagai K Hanada T Ikoma K Hide I Inoue A Nakata Y 《Journal of neurochemistry》2002,80(6):989-997
We previously described that recombinant interleukin-1beta (IL-1beta) induced the significant release of substance P (SP) via a cyclooxygenase (COX) pathway in primary cultured rat dorsal root ganglion (DRG) cells. In the present study, we examined the involvement of two types of phospholipase A2 (PLA2) enzymes, which lie upstream of COX in the prostanoid-generating pathway, in the IL-1beta-induced release of SP from DRG cells. The expression of type IIA secretory PLA2 (sPLA2 -IIA) mRNA was undetectable by ribonuclease protection assay in non-treated DRG cells, while in DRG cells incubated with 1 ng/mL of IL-1beta, the expression was induced in a time-dependent manner. On the other hand, type IV cytosolic PLA2 (cPLA2 ) mRNA was constitutively expressed in the non-treated DRG cells, and treatment with 1 ng/mL of IL-1beta for 3 h significantly increased the levels of cPLA2 mRNA. The IL-1beta-induced SP release was significantly inhibited by the sPLA2 inhibitor, thioetheramide phosphorylcholine (TEA-PC), and the cPLA2 inhibitor, arachidonyl trifluoromethyl ketone (AACOCF3 ). Furthermore AACOCF3 suppressed the induction of sPLA2 -IIA mRNA expression induced by IL-1beta. These observations suggested that two types of PLA2, sPLA2 -IIA and cPLA2, were involved in the IL-1beta-induced release of SP from DRG cells, and that the functional cross-talk between the two enzymes might help to control their activity in the prostanoid-generating system in DRG cells. These events might be key steps in the inflammation-induced hyperactivity in primary afferent neurons of spinal cord. 相似文献
11.
Macromolecules that bind beta-amyloid peptide (Abeta) and neutralize Abeta cytotoxicity offer a promising new approach for treating Alzheimer's disease. When the plasma protein, alpha2-macroglobulin (alpha2M), is treated with methylamine (alpha2M-MA), it undergoes conformational change and acquires Abeta-binding activity. In this study, we demonstrate that a chemically stabilized preparation of human alpha2M conformational intermediates (alpha2M-cis-Pt/MA) binds Abeta with greatly increased affinity, compared with alpha2M-MA. alpha2M-cis-Pt/MA was generated by reacting alpha2M with the protein cross-linking reagent, cis-Pt, followed by methylamine. Increased Abeta-binding to alpha2M-cis-Pt/MA was demonstrated by co-migration of radio-iodinated proteins in non-denaturing PAGE, chemical cross-linking, and co-immunoprecipitation. The apparent K(D) for Abeta-binding to alpha2M-cis-Pt/MA was decreased 10-fold, compared with alpha2M-MA, to 29 nm. Native alpha2M demonstrated negligible Abeta-binding, as anticipated. alpha2M-cis-Pt/MA markedly counteracted Abeta-induced C6 cell apoptosis. Essentially complete inhibition of apoptosis was observed even when the Abeta was present at fourfold molar excess to alpha2M-cis-Pt/MA. Under equivalent conditions, alpha2M-MA inhibited apoptosis by 25 +/- 6%. When Abeta and alpha2M-cis-Pt/MA were added to human plasma in vitro, significant binding was detected. No binding was observed when an equivalent concentration of native alpha2M or alpha2M-MA was added to plasma. We propose that alpha2M-cis-Pt/MA is a novel alternative to Abeta-specific antibodies, for studying the efficacy of Abeta-binding agents in vitro and in vivo. 相似文献
12.
Brustovetsky T Antonsson B Jemmerson R Dubinsky JM Brustovetsky N 《Journal of neurochemistry》2005,94(4):980-994
Cleaved or truncated BID (tBID) is known to oligomerize both BAK and BAX. Previously, BAK and BAX lacing the C-terminal fragment (BAXDeltaC) were shown to induce modest cytochrome c (Cyt c) release from rat brain mitochondria when activated by tBID. We now show that tBID plus monomeric full-length BAX induce extensive release of Cyt c, Smac/DIABLO, and Omi/HtrA2 (but not endonuclease G and the apoptosis inducing factor) comparable to the release induced by alamethicin. This occurs independently of the permeability transition without overt changes in mitochondrial morphology. The mechanism of the release may involve formation of reactive oxygen species (ROS) and activation of calcium-independent phospholipase A(2) (iPLA(2)). Indeed, increased ROS production and activated iPLA(2) were observed prior to massive Cyt c release. Furthermore, the extent of inhibition of Cyt c release correlated with the degree of suppression of iPLA(2) by the inhibitors propranolol, dibucaine, 4-bromophenacyl bromide, and bromenol lactone. Consistent with a requirement for iPLA(2) in Cyt c release from brain mitochondria, synthetic liposomes composed of lipids mimicking the outer mitochondrial membrane (OMM) but lacing iPLA(2) failed to release 10 kDa fluorescent dextran (FD-10) in response to tBID plus BAX. We propose that tBID plus BAX activate ROS generation, which subsequently augments iPLA(2) activity leading to changes in the OMM that allow translocation of certain mitochondrial proteins from the intermembrane space. 相似文献
13.
Oikawa Y Yamato E Tashiro F Yamamoto M Uozumi N Shimada A Shimizu T Miyazaki J 《FEBS letters》2005,579(18):3975-3978
Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) plays an important role in arachidonate pathway. To investigate the contribution of cPLA(2)alpha to autoimmune diabetes, we established non-obese diabetic (NOD) mouse, an excellent model for human type 1 diabetes, deficient in cPLA(2)alpha. These mice showed severe insulitis and a higher incidence of diabetes. In their macrophages, decreased prostaglandin E(2) (PGE(2)) induced by cPLA(2)alpha deficiency, and the increase in production of tumor necrosis factor (TNF)-alpha were observed. These results suggested that cPLA(2)alpha plays a protective role in progression of insulitis and development of autoimmune diabetes by suppression of TNF-alpha production from macrophages. 相似文献
14.
Angelo O. Rosa Stanley I. Rapoport 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(8):697-705
Docosahexaenoic acid (DHA) and arachidonic acid (AA) are found in high concentrations in brain cell membranes and are important for brain function and structure. Studies suggest that AA and DHA are hydrolyzed selectively from the sn-2 position of synaptic membrane phospholipids by Ca2+-dependent cytosolic phospholipase A2 (cPLA2) and Ca2+-independent phospholipase A2 (iPLA2), respectively, resulting in increased levels of the unesterified fatty acids and lysophospholipids. Cell studies also suggest that AA and DHA release depend on increased concentrations of Ca2+, even though iPLA2 has been thought to be Ca2+-independent. The source of Ca2+ for activation of cPLA2 is largely extracellular, whereas Ca2+ released from the endoplasmic reticulum can activate iPLA2 by a number of mechanisms. This review focuses on the role of Ca2+ in modulating cPLA2 and iPLA2 activities in different conditions. Furthermore, a model is suggested in which neurotransmitters regulate the activity of these enzymes and thus the balanced and localized release of AA and DHA from phospholipid in the brain, depending on the primary source of the Ca2+ signal. 相似文献
15.
Tatsurou Yagami Kenkichi Takase Keiichi Ueda Noboru Okamura Toshiyuki Sakaeda Masafumi Fujimoto 《Experimental cell research》2010,316(14):2278-2290
In the central nervous system, fibroblast growth factor 2 (FGF2) is known to have important functions in cell survival and differentiation. In addition to its roles as a neurotrophic factor, we found that FGF2 caused cell death in the early primary culture of cortical neurons. FGF2-induced neuronal cell death showed apoptotic characters, e.g., chromatin condensation and DNA fragmentation. The ultrastructural morphology of FGF2-treated neurons indicated apoptotic features such as progressive cell shrinkage, blebbing of the plasma membrane, loss of cytosolic organelles, clumping of chromatin, and fragmentation of DNA. Tyrosine kinase inhibitors significantly rescued neurons from FGF2-induced apoptosis. FGF2 potentiated a marked influx of Ca2+ into neurons before apoptosis. Both a calcium chelator and L-type voltage-sensitive Ca2+ channel (L-VSCC) blockers attenuated FGF2-induced apoptosis, whereas other blockers of VSCCs such as N-type and P/Q-types did not. Blockers of L-VSCCs significantly suppressed FGF2-enhanced Ca2+ influx into neurons. Moreover, FGF2 also generated reactive oxygen species (ROS) before apoptosis. Radical scavengers reduced not only the FGF2-generated ROS, but also the FGF2-induced Ca2+ influx and apoptosis. In conclusion, we demonstrated that FGF2 caused apoptosis via L-VSCCs in the early neuronal culture. 相似文献
16.
Human amylin (hA), which is toxic to islet β-cells, can self-generate H2O2, and this process is greatly enhanced in the presence of Cu(II) ions. Here we show that carbonyl groups, a marker of oxidative modification, were formed in hA incubated in the presence of Cu(II) ions or Cu(II) ions plus H2O2, but not in the presence of H2O2 alone. Furthermore, under similar conditions (i.e., in the presence of both Cu(II) ions and H2O2), hA also stimulated ascorbate radical formation. The same observations concerning carbonyl group formation were made when the histidine residue (at position 18) in hA was replaced by alanine, indicating that this residue does not play a key role. In complete contrast to hA, rodent amylin, which is nontoxic, does not generate H2O2, and binds Cu(II) ions only weakly, showed none of these properties. We conclude that the hA-Cu(II)/Cu(I) complex is redox active, with electron donation from the peptide reducing the oxidation state of the copper ions. The complex is capable of forming H2O2 from O2 and can also generate •OH via Fenton chemistry. These redox properties of hA can explain its ability to stimulate copper-mediated carbonyl group and ascorbate radical formation. The formation of reactive oxygen species from hA in this way could hold the key to a better understanding of the damaging consequences of amyloid formation within the pancreatic islets of patients with type 2 diabetes mellitus. 相似文献
17.
Rodríguez Diez G Uranga RM Mateos MV Giusto NM Salvador GA 《Neurochemistry international》2012,61(5):749-758
Both elevated iron concentrations and the resulting oxidative stress condition are common signs in retinas of patients with age-related macular degeneration (AMD). The role of phospholipase A(2) (PLA(2)) during iron-induced retinal toxicity was investigated. To this end, isolated retinas were exposed to increasing Fe(2+) concentrations (25, 200 or 800μM) or to the vehicle, and lipid peroxidation levels, mitochondrial function, and the activities of cytosolic PLA(2) (cPLA(2)) and calcium-independent PLA(2) (iPLA(2)) were studied. Incubation with Fe(2+) led to a time- and concentration-dependent increase in retinal lipid peroxidation levels whereas retinal cell viability was only affected after 60min of oxidative injury. A differential release of arachidonic acid (AA) and palmitic acid (PAL) catalyzed by cPLA(2) and iPLA(2) activities, respectively, was also observed in microsomal and cytosolic fractions obtained from retinas incubated with iron. AA release diminished as the association of cyclooxigenase-2 increased in microsomes from retinas exposed to iron. Retinal lipid peroxidation and cell viability were also analyzed in the presence of cPLA(2) inhibitor, arachidonoyl trifluoromethyl ketone (ATK), and in the presence of iPLA(2) inhibitor, bromoenol lactone (BEL). ATK decreased lipid peroxidation levels and also ERK1/2 activation without affecting cell viability. BEL showed the opposite effect on lipid peroxidation. Our results demonstrate that iPLA(2) and cPLA(2) are differentially regulated and that they selectively participate in retinal signaling in an experimental model resembling AMD. 相似文献
18.
Hu Wang Fanny Cheung Anna C. Stoll Patricia Rockwell Maria E. Figueiredo-Pereira 《生物化学与生物物理学报:疾病的分子基础》2019,1865(6):1436-1450
Mitochondrial impairment and calcium (Ca++) dyshomeostasis are associated with Parkinson's disease (PD). When intracellular ATP levels are lowered, Ca++-ATPase pumps are impaired causing cytoplasmic Ca++ to be elevated and calpain activation. Little is known about the effect of calpain activation on Parkin integrity. To address this gap, we examined the effects of mitochondrial inhibitors [oligomycin (Oligo), antimycin and rotenone] on endogenous Parkin integrity in rat midbrain and cerebral cortical cultures. All drugs induced calpain-cleavage of Parkin to ~36.9/43.6 kDa fragments. In contrast, treatment with the proinflammatory prostaglandin J2 (PGJ2) and the proteasome inhibitor epoxomicin induced caspase-cleavage of Parkin to fragments of a different size, previously shown by others to be triggered by apoptosis. Calpain-cleaved Parkin was enriched in neuronal mitochondrial fractions. Pre-treatment with the phosphatase inhibitor okadaic acid prior to Oligo-treatment, stabilized full-length Parkin phosphorylated at Ser65, and reduced calpain-cleavage of Parkin. Treatment with the Ca++ ionophore A23187, which facilitates Ca++ transport across the plasma membrane, mimicked the effect of Oligo by inducing calpain-cleavage of Parkin. Removing extracellular Ca++ from the media prevented oligomycin- and ionophore-induced calpain-cleavage of Parkin. Computational analysis predicted that calpain-cleavage of Parkin liberates its UbL domain. The phosphagen cyclocreatine moderately mitigated Parkin cleavage by calpain. Moreover, the pituitary adenylate cyclase activating peptide (PACAP27), which stimulates cAMP production, prevented caspase but not calpain-cleavage of Parkin. Overall, our data support a link between Parkin phosphorylation and its cleavage by calpain. This mechanism reflects the impact of mitochondrial impairment and Ca++-dyshomeostasis on Parkin integrity and could influence PD pathogenesis. 相似文献
19.
Background
The prevalence of type 2 diabetes is rapidly increasing world-wide and insulin resistance is central to the aetiology of this disease. The biology underpinning the development of insulin resistance is not completely understood and the role of impaired mitochondrial function in the development of insulin resistance is controversial.Scope of review
This review will provide an overview of the major processes regulated by mitochondria, before examining the evidence that has investigated the relationship between mitochondrial function and insulin action. Further considerations aimed at clarifying some controversies surrounding this issue will also be proposed.Major conclusions
Controversy on this issue is fuelled by our lack of understanding of some of the basic biological interactions between mitochondria and insulin regulated processes in the context of insults thought to induce insulin resistance. Aspects that have not yet been considered are tissue/cell type specific responses, mitochondrial responses to site-specific impairments in mitochondrial function and as yet uncharacterised retrograde signalling from mitochondria.General significance
Further investigation of the relationship between mitochondria and insulin action could reveal novel mechanisms contributing to insulin resistance in specific patient subsets. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research. 相似文献20.
As the brain ages, cognitive and motor performance decline. This decline is thought to be largely due to the accumulation of damaging products from normal oxidative metabolism and to the perturbation of general body homeostasis and brain-circulation separation. Despite this abundance of insults, the aged brain contains few dead neurons, suggesting that aging must be paralleled by triggering or enhancing neuronal survival mechanisms. Recent evidence points to the contribution of changes in the lipid composition of membranes to both age-dependent cognitive decline and robust neuronal survival. In this review, we describe and discuss the current understanding of the roles of lipids in neuronal aging, with special attention to their influence on membrane fusion, neurotransmitter receptor dynamics and survival/death signaling pathways. 相似文献