首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our studies on the T4 replisome build on the seminal work from the Alberts laboratory. They discovered essentially all the proteins that constitute the T4 replisome, isolated them, and measured their enzymatic activities. Ultimately, in brilliant experiments they reconstituted in vitro a functioning replisome and in the absence of structural information created a mosaic as to how such a machine might be assembled. Their consideration of the problem of continuous leading strand synthesis opposing discontinuous lagging strand synthesis led to their imaginative proposal of the trombone model, an illustration that graces all textbooks of biochemistry. Our subsequent work deepens their findings through experiments that focus on defining the kinetics, structural elements, and protein-protein contacts essential for replisome assembly and function. In this highlight we address when Okazaki primer synthesis is initiated and how the primer is captured by a recycling lagging strand polymerase--problems that the Alberts laboratory likewise found mysterious and significant for all replisomes.  相似文献   

2.
DNA polymerase and gene 4 protein of bacteriophage T7 catalyze DNA synthesis on duplex DNA templates. Synthesis is initiated at nicks in the DNA template, and this leading strand synthesis results in displacement of one of the parental strands. In the presence of ribonucleoside 5'-triphosphates the gene 4 protein catalyzes the synthesis of oligoribonucleotide primers on the displaced single strand, and their extension by T7 dna polymerase accounts for lagging strand synthesis. Since all the oligoribonucleotide primers bear adenosine 5'-triphosphate residues at their 5' termini, [gamma 32P]ATP is incorporated specifically into the product molecule, thus providing a rapid and sensitive assay for the synthesis of the RNA primers. Both primer synthesis and DNA synthesis are stimulated 3- to 5-fold by the presence of either Escherichia coli or T7 helix-destabilizing protein (DNA binding protein). ATP and CTP together fully satisfy the requirement for rNTPs and provide maximum synthesis of primers and DNA. Provided that T7 DNA polymerase is present, RNA-primed DNA synthesis occurs on either duplex or single-stranded DNA templates and to equal extents on either strand of T7 DNA. No primer-directed DNA synthesis occurs on poly(dT) or poly(dG) templates, indicating that synthesis of primers is template-directed.  相似文献   

3.
The lytic bacteriophage T4 uses multiple mechanisms to initiate the replication of its DNA. Initiation occurs predominantly at replication origins at early times of infection, but there is a switch to genetic recombination-dependent initiation at late times of infection. The T4 insertion-substitution system was used to create a deletion in the T4 dda gene, which encodes a 5'-3' DNA helicase that stimulates both DNA replication and recombination reactions in vitro. The deletion caused a delay in T4 DNA synthesis at early times of infection, suggesting that the Dda protein is involved in the initiation of origin-dependent DNA synthesis. However, DNA synthesis eventually reached nearly wild-type levels, and the final number of phages produced per bacterium was similar to that of the wild type. When the dda mutant phage also contained a mutation in T4 gene 59 (a gene normally required only for recombination-dependent DNA replication), essentially no DNA was synthesized. Recent in vitro studies have shown that the gene 59 protein loads a component of the primosome, the T4 gene 41 DNA helicase, onto DNA. A molecular model for replication initiation is presented that is based on our genetic data.  相似文献   

4.
In eukaryotic nuclear DNA replication, one strand of DNA is synthesized continuously, but the other is made as Okazaki fragments that are later joined. Discontinuous synthesis is inherently more complex, and fragmented intermediates create risks for disruptions of genome integrity. Genetic analyses and biochemical reconstitutions indicate that several parallel pathways evolved to ensure that the fragments are made and joined with integrity. An RNA primer is removed from each fragment before joining by a process involving polymerase-dependent displacement into a single-stranded flap. Evidence in vitro suggests that, with most fragments, short flaps are displaced and efficiently cleaved. Some flaps can become long, but these are also removed to allow joining. Rarely, a flap can form structure, necessitating displacement of the entire fragment. There is now evidence that post-translational protein modification regulates the flow through the pathways to favor protection of genomic information in regions of actively transcribed chromatin.  相似文献   

5.
Control of bacteriophage T4 DNA polymerase synthesis   总被引:13,自引:0,他引:13  
Analysis of sodium dodecyl sulphate/acrylamide gels of 14C-labelled proteins from phage-infected bacteria suggests the existence of a self-regulatory control mechanism in bacteriophage T4.Infection of Escherichia coli with phage T4 carrying a mutation in gene 43 (which codes for the phage DNA polymerase) results in a greatly increased rate of synthesis of the gene 43 protein. Such overproduction of defective polymerase occurs in restrictive infections with all gene 43 amber and most gene 43 temperature-sensitive mutants tested. Gene 43 protein synthesis in gene 43+ infections or increased synthesis in gene 43? infections appears to require no additional function of other phage proteins essential for DNA synthesis. Functional gene 43 protein is needed continuously to keep its own levels down to normal.  相似文献   

6.
Since bacteriophage T4 DNA polymerase is unable to use duplex DNA molecules as templates (B. Alberts, J. Barry, M. Brittner, M. Davies, H. Hama-Inaba, C. C. Liu, D. Mace, L. Moran, C. F. Morris, J. Piperno, and N. Sinha, 1977, in Nucleic Acids and Protein Recognition, Vogel, H. J., ed., pp. 31–63, Academic Press, New York), a technique involving synchronous and uniquely primed synthesis of DNA on the single-stranded fd DNA by the T4 DNA polymerase has been developed to probe regions exhibiting secondary structure on this genome. As the polymerase proceeds, the template secondary structure acts as a kinetic barrier to delay the continuous chain extension catalyzed by this enzyme. These kinetic pause sites can be mapped by denaturing agarose gel electrophoresis of replication intermediates and used to generate a secondary structure map. Using this method, we are able to establish a list including at least seven plausible stable helical regions in fd DNA. Two of the most stable secondary structures have been mapped near fd sequence positions 3350 and 5650, respectively. The latter has been reported to be the region where fd DNA replication begins (C. P. Gray, R. Sommer, C. Polke, E. Beck, and H. Schaller, 1978, Proc. Nat. Acad. Sci. USA, 75, 50–53). However, the biological function associated with the former has yet to be investigated. Following a two-state model, we estimate the first-order rate constant for progression through the duplex regions near position 5650 in fd DNA to be about 0.042 min?1 for fd DNA synthesis by the T4 DNA polymerase under our reaction conditions. A 7.5-fold increase in this rate constant is obtained upon the addition of the T4 DNA helix destabilizing protein (i.e., gene 32 protein). The general pattern of our secondary structure map agrees well with a computer search for duplex regions on the fd genome. Both the stability and the size of a stable secondary structure at a particular position on the fd template determine the time that the newly made DNA molecules spend at that site. A structure with a stem of less than 8 base pairs does not interrupt significantly the procession of the T4 DNA polymerase during the process of fd DNA synthesis.  相似文献   

7.
The DNA polymerase induced after infection of Escherichia coli by bacteriophage T7 can exist in two forms. One distinguishing property of Form I, the elimination of nicks in double-stranded DNA templates, strongly suggests that this form of the polymerase catalyzes limited DNA synthesis at nicks, resulting in displacement of the downstream strand. In this paper, we document this reaction by a detailed characterization of the DNA product. DNA synthesis on circular, duplex DNA templates containing a single site-specific nick results in circular molecules bearing duplex branches. Analysis of newly synthesized DNA excised from the product shows that the majority of the branches are less than 500 base pairs in length and that they arise from a limited number of sites. The branches have fully base-paired termini but are attached by two noncomplementary DNA strands that have a combined length of less than 30 nucleotides. The product molecules are topologically constrained as a result of the duplex branch. DNA sequence analysis has provided an unequivocal structure of one such product molecule. We conclude that strand displacement synthesis catalyzed by Form I of T7 DNA polymerase is terminated by a template-switching reaction. We propose two distinct models for template-switching that we call primer relocation and rotational strand exchange. Strand displacement synthesis catalyzed by Form I of T7 DNA polymerase effectively converts T7 DNA circles that are held together by hydrogen bonds in their 160-nucleotide-long terminal redundancy to T7-length linear molecules. We suggest that strand displacement synthesis catalyzed by T7 DNA polymerase is essential in vivo to the processing of a T7 DNA concatemer to mature T7 genomes.  相似文献   

8.
There are two modes of DNA synthesis at a replication fork. The leading strand is synthesized in a continuous fashion in lengths that in Escherichia coli can be in excess of 2 megabases. On the other hand, the lagging strand is synthesized in relatively short stretches of 2 kilobases. Nevertheless, identical assemblies of the DNA polymerase III core tethered to the beta sliding clamp account for both modes of DNA synthesis. Yet the same lagging strand polymerase accounts for the synthesis of all Okazaki fragments at a replication fork, cycling repeatedly every 1 or 2 s from the 3'-end of the just-completed fragment to the 3'-end of the new primer. Several models have been invoked to account for the rapid cycling of a polymerase complex that can remain bound to the template for upward of 40 min. By using isolated replication protein-DNA template complexes, we have tested these models and show here that cycling of the lagging strand polymerase can be triggered by either the action of primase binding to the replisome and synthesizing a primer or by collision of the lagging strand polymerase with the 5'-end of the previous Okazaki fragment.  相似文献   

9.
10.
Duplex DNA is replicated in the 5'-3' direction by coordinated copying of leading and lagging strand templates with somewhat different proteins and mechanics, providing the potential for differences in the fidelity of replication of the two strands. We previously showed that in Saccharomyces cerevisiae, active replication origins establish a strand bias in the rate of base substitutions resulting from replication of unrepaired 8-oxo-guanine (GO) in DNA. Lower mutagenesis was associated with replicating lagging strand templates. Here, we test the hypothesis that this bias is due to more efficient repair of lagging stand mismatches by measuring mutation rates in ogg1 strains with a reporter allele in two orientations at loci on opposite sides of a replication origin on chromosome III. We compare a MMR-proficient strain to strains deleted for the MMR genes MSH2, MSH6, MLH1, or EXOI. Loss of MMR reduces the strand bias by preferentially increasing mutagenesis for lagging strand replication. We conclude that GO-A mismatches generated during lagging strand replication are more efficiently repaired. This is consistent with the hypothesis that 5' ends of Okazaki fragments and PCNA, present at high density during lagging strand replication, are used as strand discrimination signals for mismatch repair in vivo.  相似文献   

11.
Isolation of bacteriophage T4 DNA polymerase mutator mutants   总被引:5,自引:0,他引:5  
More than 20 new bacteriophage T4 DNA polymerase mutants have been isolated by a procedure designed to select mutants with high spontaneous mutation rates. Some of the mutants produce the highest mutation frequencies that have been observed in T4 thus far. The design of the selection procedure allows for the isolation of mutator mutants that preferentially induce certain types of replication errors, and some of the mutator mutants have mutational specificities different from wild-type. The new mutants are clustered at just two sites in the DNA polymerase gene, and this result confirms an earlier observation.  相似文献   

12.
G Prelich  B Stillman 《Cell》1988,53(1):117-126
Proliferating cell nuclear antigen (PCNA) is a cell cycle and growth regulated protein required for replication of SV40 DNA in vitro. Its function was investigated by comparison of the replication products synthesized in its presence or absence. In the completely reconstituted replication system that contains PCNA, DNA synthesis initiates at the origin and proceeds bidirectionally on both leading and lagging strands around the template DNA to yield duplex, circular daughter molecules. In contrast, in the absence of PCNA, early replicative intermediates containing short nascent strands accumulate. Replication forks continue bidirectionally from the origin, but surprisingly, only lagging strand products are synthesized. Thus two stages of DNA synthesis have been defined, with the second stage requiring PCNA for coordinated leading and lagging strand synthesis at the replication fork. We suggest that during eukaryotic chromosome replication there is a switch to a PCNA-dependent elongation stage that requires two distinct DNA polymerases.  相似文献   

13.
A strand exchange reaction between a single-stranded DNA circle and a homologous linear double-stranded DNA molecule is catalyzed by a mixture of two T4 bacteriophage proteins, the uvsX protein (a DNA-dependent ATPase that resembles the recA protein) and the gene 32 protein (a helix-destabilizing protein). The products are different from those formed in the corresponding recA protein-catalyzed reaction; rather than producing a linear single strand plus a nicked circular double-stranded (form II) DNA molecule as the final products, interlinked DNA networks are rapidly generated. Electron microscopy reveals that these networks form from multiple pairing reactions that involve the recombination intermediates. Since the uvsX protein is present in substoichiometric quantities, it presumably recycles to catalyze these successive pairing events. Recycling of the uvsX protein has been more directly examined in an assay that monitors the rate of uvsX protein-catalyzed branch migration. The branch migration reaction is rapidly inhibited by dilution of the uvsX protein or by the addition of a heterologous competitor DNA, showing that the uvsX protein-DNA filaments that catalyze strand exchange are dynamic structures. The evidence suggests that individual uvsX protein monomers are continuously entering and leaving the cooperatively formed filament in a cycle that is strongly affected by their ATP hydrolysis.  相似文献   

14.
Complexes formed between DNA polymerase and genomic DNA at the replication fork are key elements of the replication machinery. We used sedimentation velocity, fluorescence anisotropy, and surface plasmon resonance to measure the binding interactions between bacteriophage T4 DNA polymerase (gp43) and various model DNA constructs. These results provide quantitative insight into how this replication polymerase performs template-directed 5' --> 3' DNA synthesis and how this function is coordinated with the activities of the other proteins of the replication complex. We find that short (single- and double-stranded) DNA molecules bind a single gp43 polymerase in a nonspecific (overlap) binding mode with moderate affinity (Kd approximately 150 nm) and a binding site size of approximately 10 nucleotides for single-stranded DNA and approximately 13 bp for double-stranded DNA. In contrast, gp43 binds in a site-specific (nonoverlap) mode and significantly more tightly (Kd approximately 5 nm) to DNA constructs carrying a primer-template junction, with the polymerase covering approximately 5 nucleotides downstream and approximately 6-7 bp upstream of the 3'-primer terminus. The rate of this specific binding interaction is close to diffusion-controlled. The affinity of gp43 for the primer-template junction is modulated specifically by dNTP substrates, with the next "correct" dNTP strengthening the interaction and an incorrect dNTP weakening the observed binding. These results are discussed in terms of the individual steps of the polymerase-catalyzed single nucleotide addition cycle and the replication complex assembly process. We suggest that changes in the kinetics and thermodynamics of these steps by auxiliary replication proteins constitute a basic mechanism for protein coupling within the replication complex.  相似文献   

15.
Bacteriophage T4 rnh encodes an RNase H that removes ribopentamer primers from nascent DNA chains during synthesis by the T4 multienzyme replication system in vitro (H. C. Hollingsworth and N. G. Nossal, J. Biol. Chem. 266:1888-1897, 1991). This paper demonstrates that either T4 RNase HI or Escherichia coli DNA polymerase I (Pol I) is essential for phage replication. Wild-type T4 phage production was not diminished by the polA12 mutation, which disrupts coordination between the polymerase and the 5'-to-3' nuclease activities of E. coli DNA Pol I, or by an interruption in the gene for E. coli RNase HI. Deleting the C-terminal amino acids 118 to 305 from T4 RNase H reduced phage production to 47% of that of wild-type T4 on a wild-type E. coli host, 10% on an isogenic host defective in RNase H, and less than 0.1% on a polA12 host. The T4 rnh(delta118-305) mutant synthesized DNA at about half the rate of wild-type T4 in the polA12 host. More than 50% of pulse-labelled mutant DNA was in short chains characteristic of Okazaki fragments. Phage production was restored in the nonpermissive host by providing the T4 rnh gene on a plasmid. Thus, T4 RNase H was sufficient to sustain the high rate of T4 DNA synthesis, but E. coli RNase HI and the 5'-to-3' exonuclease of Pol I could substitute to some extent for the T4 enzyme. However, replication was less accurate in the absence of the T4 RNase H, as judged by the increased frequency of acriflavine-resistant mutations after infection of a wild-type host with the T4 rnh (delta118-305) mutant.  相似文献   

16.
The replication of plasmids containing fragments of the T4 genome, but no phage replication origins, was analyzed as a possible model for phage secondary (recombination-dependent) replication initiation. The replication of such plasmids after T4 infection was reduced or eliminated by mutations in several phage genes (uvsY, uvsX, 46, 59, 39, and 52) that have previously been shown to be involved in secondary initiation. A series of plasmids that collectively contain about 60 kilobase pairs of the T4 genome were tested for replication after T4 infection. With the exception of those known to contain tertiary origins, every plasmid replicated in a uvsY-dependent fashion. Thus, there is no apparent requirement for an extensive nucleotide sequence in the uvsY-dependent plasmid replication. However, homology with the phage genome is required since the plasmid vector alone did not replicate after phage infection. The products of plasmid replication included long concatemeric molecules with as many as 35 tandem copies of plasmid sequence. The production of concatemers indicates that plasmid replication is an active process and not simply the result of passive replication after the integration of plasmids into the phage genome. We conclude that plasmids with homology to the T4 genome utilize the secondary initiation mechanism of the phage. This simple model system should be useful in elucidating the molecular mechanism of recombination-dependent DNA synthesis in phage T4.  相似文献   

17.
The fluorescence of the base analogue 2-aminopurine (2AP) was used to detect physical changes in the template strand during nucleotide incorporation by the bacteriophage T4 DNA polymerase. Fluorescent enzyme-DNA complexes were formed with 2AP placed in the template strand opposite the primer terminus (the n position) and placed one template position 5' to the primer terminus (the n + 1 position). The fluorescence enhancement for 2AP at the n position was shown to be due to formation of the editing complex, which indicates that the 2AP-T terminal base pair is recognized primarily as a mismatch. 2AP fluorescence at the n + 1 position, however, was a reporter for DNA interactions in the polymerase active center that induce intrastrand base unstacking. T4 DNA polymerase produced base unstacking at the n + 1 position following formation of the phosphodiester bond. Thus, the increase in fluorescence intensity for 2AP at the n + 1 position could be used to measure the nucleotide incorporation rate in primer extension reactions in which 2AP was placed initially at the n + 2 position. Primer extension occurred at the rate of about 314 s(-1). The amount of base unstacking at the template n + 1 position was sensitive to the local DNA sequence. More base unstacking was detected for DNA substrates with an A-T base pair at the primer terminus compared to C-G or G-C base pairs. Since proofreading is also increased by A-T base pairs compared to G-C base pairs at the primer terminus, we propose that base unstacking may provide an opportunity for the DNA polymerase to reexamine the primer terminus.  相似文献   

18.
19.
RNA priming of DNA replication by bacteriophage T4 proteins   总被引:13,自引:0,他引:13  
Bacteriophage T4 DNA replication proteins have been shown previously to require ribonucleoside triphosphates to initiator new DNA chains on unprimed single-stranded DNA templates in vitro. This DNA synthesis requires a protein controlled by T4 gene 61, as well as the T4 gene 41, 43 (DNA polymerase), 44, 45, and 62 proteins, and is stimulated by the gene 32 (helix-destabilizing) protein. In this paper, the nature of the RNA primers involved in DNA synthesis by the T4 proteins has been determined, using phi X174 and f1 DNA as model templates. The T4 41 and "61" proteins synthesize pentanucleotides with the sequence pppA-C(N)3 where N in positions 3 and 4 can be G, U, C, or A. The same group of sequences is found in the RNA at the 5' terminus of the phi X174 DNA product made by the seven T4 proteins. The DNA product chains begin at multiple discrete positions on the phi X174 DNA template. The characteristics of the T4 41 and "61" protein priming reaction are thus appropriate for a reaction required to initiate the synthesis of discontinuous "Okazaki" pieces on the lagging strand during the replication of duplex DNA.  相似文献   

20.
Phage DNA was accumulated in cells of E. coli B, infected with the phage T4DtsLB3 (gene 42), without the synthesis of late proteins (in the presence of chloramphenicol). Then (stage II), chloramphenicol was removed and further replication of the phage DNA suppressed with hydroxyurea and by simultaneously raising the temperature to 40 degrees. The media M9 or M9 with 1% amino acid were used; the times of addition of chloramphenicol and the hydroxyurea concentration were also varied. It was also shown that in medium M9, at stage II, chiefly early proteins were synthesized. In the medium containing amino acids, at stage II the following was observed: 1) DNA synthesis was entirely suppressed and a degradation of DNA occurred; 2) both early and late proteins were synthesized, with a predominance of the latter; 3) an assembly of the elements of the phage tails and capsids occurred without the neck and flagellum, and a small number of phage particles were also found; 4) the capsids, isolated in a sucrose density gradient after lysis with chloroform, contained the proteins Palt, P20, P23, P24, several unidentified proteins, and did not contain Pwac, P23, and P22, 5) the yield of viable phage varied from 0.05 to 15% per cell. Thus, the entire morphogenesis of T4 phage can occur without accompanying replication of phage DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号