共查询到20条相似文献,搜索用时 15 毫秒
1.
Ishiwata K Sasaki G Ogawa J Miyata T Su ZH 《Molecular phylogenetics and evolution》2011,58(2):169-180
Many attempts to resolve the phylogenetic relationships of higher groups of insects have been made based on both morphological and molecular evidence; nonetheless, most of the interordinal relationships of insects remain unclear or are controversial. As a new approach, in this study we sequenced three nuclear genes encoding the catalytic subunit of DNA polymerase delta and the two largest subunits of RNA polymerase II from all insect orders. The predicted amino acid sequences (In total, approx. 3500 amino acid sites) of these proteins were subjected to phylogenetic analyses based on the maximum likelihood and Bayesian analysis methods with various models. The resulting trees strongly support the monophyly of Palaeoptera, Neoptera, Polyneoptera, and Holometabola, while within Polyneoptera, the groupings of Isoptera/"Blattaria"/Mantodea (Superorder Dictyoptera), Dictyoptera/Zoraptera, Dermaptera/Plecoptera, Mantophasmatodea/Grylloblattodea, and Embioptera/Phasmatodea are supported. Although Paraneoptera is not supported as a monophyletic group, the grouping of Phthiraptera/Psocoptera is robustly supported. The interordinal relationships within Holometabola are well resolved and strongly supported that the order Hymenoptera is the sister lineage to all other holometabolous insects. The other orders of Holometabola are separated into two large groups, and the interordinal relationships of each group are (((Siphonaptera, Mecoptera), Diptera), (Trichoptera, Lepidoptera)) and ((Coleoptera, Strepsiptera), (Neuroptera, Raphidioptera, Megaloptera)). The sister relationship between Strepsiptera and Diptera are significantly rejected by all the statistical tests (AU, KH and wSH), while the affinity between Hymenoptera and Mecopterida are significantly rejected only by AU and KH tests. Our results show that the use of amino acid sequences of these three nuclear genes is an effective approach for resolving the relationships of higher groups of insects. 相似文献
2.
Phylogenetic analysis of arthropods using two nuclear protein-encoding genes supports a crustacean + hexapod clade 总被引:20,自引:0,他引:20
Recent phylogenetic analyses using molecular data suggest that hexapods are more closely related to crustaceans than to myriapods, a result that conflicts with long-held morphology-based hypotheses. Here we contribute additional information to this debate by conducting phylogenetic analyses on two nuclear protein-encoding genes, elongation factor-1 alpha (EF-1 alpha) and the largest subunit of RNA polymerase II (Pol II), from an extensive sample of arthropod taxa. Results were obtained from two data sets. One data set comprised 1092 nucleotides (364 amino acids) of EF-1 alpha and 372 nucleotides (124 amino acids) of Pol II from 30 arthropods and three lobopods. The other data set contained the same EF-1 alpha fragment and an expanded 1038-nucleotide (346-amino-acid) sample of Pol II from 17 arthropod taxa. Results from maximum-parsimony and maximum-likelihood analyses strongly supported the existence of a Crustacea + Hexapoda clade (Pancrustacea) over a Myriapoda + Hexapoda clade (Atelocerata). The apparent incompatibility between the molecule-based Pancrustacea hypothesis and morphology-based Atelocerata hypothesis is discussed. 相似文献
3.
Although nuclear protein-coding genes have proven broadly useful for phylogenetic inference, relatively few such genes are regularly employed in studies of Coleoptera, the most diverse insect order. We increase the number of loci available for beetle systematics by developing protocols for three genes previously unused in beetles (alpha-spectrin, RNA polymerase II and topoisomerase I) and by refining protocols for five genes already in use (arginine kinase, CAD, enolase, PEPCK and wingless). We evaluate the phylogenetic performance of each gene in a Bayesian framework against a presumably known test phylogeny. The test phylogeny covers 31 beetle specimens and two outgroup taxa of varying age, including three of the four extant beetle suborders and a denser sampling in Adephaga and in the carabid genus Bembidion. All eight genes perform well for Cenozoic divergences and accurately separate closely related species within Bembidion, but individual genes differ markedly in accuracy over the older Mesozoic and Permian divergences. The concatenated data reconstruct the test phylogeny with high support in both Bayesian and parsimony analyses, indicating that combining data from multiple nuclear loci will be a fruitful approach for assembling the beetle tree of life. 相似文献
4.
The phylogeny of Decapoda is contentious and many hypotheses have been proposed based on morphological cladistic analyses. Recent molecular studies, however, yielded contrasting results despite their use of similar data (nuclear and mitochondrial rDNA). Here we present the first application of two nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and sodium-potassium ATPase alpha-subunit, to reconstruct the phylogeny of major infraorders within Decapoda. A total of 64 species representing all infraorders of Pleocyemata were analyzed with five species from Dendrobranchiata as outgroups. Maximum likelihood and Bayesian inference reveal that the Reptantia and all but one infraorder are monophyletic. Thalassinidea, however, is polyphyletic. The nodal support for most of the infraordinal and inter-familial relationships is high. Stenopodidea and Caridea form a clade sister to Reptantia, which comprises two major clades. The first clade, consisting of Astacidea, Achelata, Polychelida and three thalassinidean families (Axiidae, Calocarididae and Eiconaxiidae), corresponds essentially to the old taxon suborder Macrura Reptantia. Polychelida nests within Macrura Reptantia instead of being the most basal reptant as suggested in previous studies. The high level of morphological and genetic divergence of Polychelida from Achelata and Astacidea justifies its infraorder status. The second major reptant clade consists of Anomura, Brachyura and two thalassindean families (Thalassinidae and Upogebiidae). Anomura and Brachyura form Meiura, with moderate support. Notably thalassinidean families are sister to both major reptant clades, suggesting that the stem lineage reptants were thalassinidean-like. Moreover, some families (e.g. Nephropidae, Diogenidae, Paguridae) are paraphyletic, warranting further studies to evaluate their status. The present study ably demonstrates the utility of nuclear protein-coding genes in phylogenetic inference in decapods. The topologies obtained are robust and the two molecular markers are informative across a wide range of taxonomic levels. We propose that nuclear protein-coding genes should constitute core markers for future phylogenetic studies of decapods, especially for higher systematics. 相似文献
5.
Sultmann H; Mayer WE; Figueroa F; Tichy H; Klein J 《Molecular biology and evolution》1995,12(6):1033-1047
The recent explosive adaptive radiation of cichlids in the great lakes of
Africa has attracted the attention of both morphologists and molecular
biologists. To decipher the phylogenetic relationships among the various
taxa within the family Cichlidae is a prerequisite for answering some
fundamental questions about the nature of the speciation process. In the
present study, we used the random amplification of polymorphic DNA (RAPD)
technique to obtain sequence differences between selected cichlid species.
We then designed specific primers based on these sequences and used them to
amplify template DNA from a large number of species by the polymerase chain
reaction (PCR). We sequenced the amplified products and searched the
sequences for indels and shared substitutions. We identified a number of
such characters at three loci-- DXTU1, DXTU2, and DXTU3--and used them for
phylogenetic and cladistic analysis of the relationships among the various
cichlid groups. Our studies assign an outgroup position to Neotropical
cichlids in relation to African cichlids, provide evidence for a
sister-group relationship of tilapiines to the haplochromines, group
Cyphotilapia frontosa with the lamprologines of Lake Tanganyika, place
Astatoreochromis alluaudi to an outgroup position with respect to other
haplochromines of Lakes Victoria and Malawi, and provide additional support
for the monophyly of the remaining Lake Victoria haplochromines and the
Lake Malawi haplochromines. The described approach holds great promise for
further resolution of cichlid phylogeny.
相似文献
6.
Knapp J Nakao M Yanagida T Okamoto M Saarma U Lavikainen A Ito A 《Molecular phylogenetics and evolution》2011,61(3):628-638
The family Taeniidae of tapeworms is composed of two genera, Echinococcus and Taenia, which obligately parasitize mammals including humans. Inferring phylogeny via molecular markers is the only way to trace back their evolutionary histories. However, molecular dating approaches are lacking so far. Here we established new markers from nuclear protein-coding genes for RNA polymerase II second largest subunit (rpb2), phosphoenolpyruvate carboxykinase (pepck) and DNA polymerase delta (pold). Bayesian inference and maximum likelihood analyses of the concatenated gene sequences allowed us to reconstruct phylogenetic trees for taeniid parasites. The tree topologies clearly demonstrated that Taenia is paraphyletic and that the clade of Echinococcus oligarthrus and Echinococcusvogeli is sister to all other members of Echinococcus. Both species are endemic in Central and South America, and their definitive hosts originated from carnivores that immigrated from North America after the formation of the Panamanian land bridge about 3 million years ago (Ma). A time-calibrated phylogeny was estimated by a Bayesian relaxed-clock method based on the assumption that the most recent common ancestor of E. oligarthrus and E. vogeli existed during the late Pliocene (3.0 Ma). The results suggest that a clade of Taenia including human-pathogenic species diversified primarily in the late Miocene (11.2 Ma), whereas Echinococcus started to diversify later, in the end of the Miocene (5.8 Ma). Close genetic relationships among the members of Echinococcus imply that the genus is a young group in which speciation and global radiation occurred rapidly. 相似文献
7.
8.
Vidal N Delmas AS David P Cruaud C Couloux A Hedges SB 《Comptes rendus biologies》2007,330(2):182-187
More than 80% of the approximately 3000 living species of snakes are placed in the taxon Caenophidia (advanced snakes), a group that includes the families Acrochordidae, Viperidae, Elapidae, Atractaspididae, and the paraphyletic 'Colubridae'. Previous studies using DNA sequences have involved few nuclear genes (one or two). Several nodes have therefore proven difficult to resolve with statistical significance. Here, we investigated the higher-level relationships of caenophidian snakes with seven nuclear protein-coding genes and obtained a well-supported topology. Accordingly, some adjustments to the current classification of Caenophidia are made to better reflect the relationships of the groups. The phylogeny also indicates that, ancestrally, caenophidian snakes are Asian and nocturnal in origin, although living species occur on nearly all continents and are ecologically diverse. 相似文献
9.
Kininogens, the precursors of bradykinins, vary extremely in both structure and function among different taxa of animals, in particular between mammals and amphibians. This includes even the most conserved bradykinin domain in terms of biosynthesis mode and structure. To elucidate the evolutionary dynamics of kininogen genes, we have identified 19 novel amino acid sequences from EST and genomic databases (for mammals, birds, and fishes) and explored their phylogenetic relationships using combined amino acid sequence and gene structure as markers. Our results show that there were initially two paralogous kininogen genes in vertebrates. During their evolution, the original gene was saved with frequent multiplication in amphibians, but lost in fishes, birds, and mammals, while the novel gene was saved with multiple functions in fishes, birds, and mammals, but became a pseudogene in amphibians. We also propose that the defense mechanism against specific predators in amphibian skin secretions has been bradykinin receptor dependent. Our findings may provide a foundation for identification and structural, functional, and evolutionary analyses of more kininogen genes and other gene families. 相似文献
10.
Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA 总被引:4,自引:0,他引:4
Theories on molecular evolution predict that phylogenetically recent nonsynonymous mutations should contain more non-neutral amino acid replacements than ancient mutations. We analyzed 840 complete coding-region human mitochondrial DNA (mtDNA) sequences for nonsynonymous mutations and evaluated the mutations in terms of the physicochemical properties of the amino acids involved. We identified 465 distinct missense and 6 nonsense mutations. 48% of the amino acid replacements changed polarity, 26% size, 8% charge, 32% aliphaticity, 13% aromaticity, and 44% hydropathy. The reduced-median networks of the amino acid changes revealed relatively few differences between the major continent-specific haplogroups, but a high variation and highly starlike phylogenies within the haplogroups. Some 56% of the mutations were private, and 25% were homoplasic. Nonconservative changes were more common than expected among the private mutations but less common among the homoplasic mutations. The asymptotic maximum of the number of nonsynonymous mutations in European mtDNA was estimated to be 1,081. The results suggested that amino acid replacements in the periphery of phylogenetic networks are more deleterious than those in the central parts, indicating that purifying selection prevents the fixation of some alleles. 相似文献
11.
We introduce a new concept of triplet periodicity class (TPC) and a measure of similarity between such classes. We performed classification of 472288 triplet periodicity (TP) regions found in 578868 genes from 29th release of KEGG databank. Totally 2520 classes were obtained. They contain 94% of 472288 found cases of TP. For 92% of TP regions contained in classes the same linkage of TP to open reading frame (ORF) is observed. For 8% of TP cases we revealed a shift between ORF of a gene and ORF common for majority of genes contained in a TPC. For these 8% of periodic regions the hypothetical amino acid sequences corresponding to ORF built by TPC were made. BLAST program has shown that 2679 hypothetical amino acid sequences have statistically significant similarity with proteins from UniProt databank. We suppose that 8% of TP regions contained in classes possess a mutation originating from ORF shift. Obtained TPCs can be used for identification of genes' coding regions as well as for searching for mutations arisen arising from ORF shift. 相似文献
12.
Background
This study aims to investigate the strength of various sources of phylogenetic information that led to recent seemingly robust conclusions about higher-level arthropod phylogeny and to assess the role of excluding or downweighting synonymous change for arriving at those conclusions.Methodology/Principal Findings
The current study analyzes DNA sequences from 68 gene segments of 62 distinct protein-coding nuclear genes for 80 species. Gene segments analyzed individually support numerous nodes recovered in combined-gene analyses, but few of the higher-level nodes of greatest current interest. However, neither is there support for conflicting alternatives to these higher-level nodes. Gene segments with higher rates of nonsynonymous change tend to be more informative overall, but those with lower rates tend to provide stronger support for deeper nodes. Higher-level nodes with bootstrap values in the 80% – 99% range for the complete data matrix are markedly more sensitive to substantial drops in their bootstrap percentages after character subsampling than those with 100% bootstrap, suggesting that these nodes are likely not to have been strongly supported with many fewer data than in the full matrix. Data set partitioning of total data by (mostly) synonymous and (mostly) nonsynonymous change improves overall node support, but the result remains much inferior to analysis of (unpartitioned) nonsynonymous change alone. Clusters of genes with similar nonsynonymous rate properties (e.g., faster vs. slower) show some distinct patterns of node support but few conflicts. Synonymous change is shown to contribute little, if any, phylogenetic signal to the support of higher-level nodes, but it does contribute nonphylogenetic signal, probably through its underlying heterogeneous nucleotide composition. Analysis of seemingly conservative indels does not prove useful.Conclusions
Generating a robust molecular higher-level phylogeny of Arthropoda is currently possible with large amounts of data and an exclusive reliance on nonsynonymous change. 相似文献13.
Mitsuo Nunome Shumpei P. Yasuda Jun J. Sato Peter Vogel & Hitoshi Suzuki 《Zoologica scripta》2007,36(6):537-546
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae ( Glis and Glirulus ) and Leithiinae ( Dryomys , Eliomys and Muscardinus ) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus , and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiurus , Glis , Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicus is suggested to be a relict of this ancient diversification during the warm period. 相似文献
14.
We examined the nucleotide sequences preceding 23 mitochondrial protein-coding genes held in common by maize, rice, wheat, sugar beet, tobacco, Arabidopsis, and Brassica to look for features related to translation initiation and to assess the degree of conservation in mitochondrial mRNA leaders among these plants. We observed broad variation in sequence similarity as illustrated by dot plot analysis, ranging from a level rivaling that of coding sequences to complete absence of homology due to lineage-specific DNA rearrangements. Genes encoding ATP synthase subunits predominated in the latter category, whereas ones encoding cytochrome c biogenesis proteins and NADH dehydrogenase subunits were primarily of the highly conserved type. Within the region immediately preceding initiation codons, in most cases we did not observe motifs consistent with a bacterial-type Shine-Dalgarno interaction to assist in ribosome binding, nor was any other consensus sequence evident. In fact, indels in the form of tandem repeats were seen among homologues from different plants. We did, however, observe a bias for high adenosine and low cytosine in the proximal approximately 30 nt compared with further upstream. Duplicates of some sequences in our data set were found to be associated with more than one gene within a genome. Indeed, 3 such families of upstream cassettes were identified, and they exhibit a lineage-specific distribution among plants. Moreover, the presence of related sequences at genomic sites distant from known genes raises the possibility of future recruitment as regulatory elements. Our observations point to a dynamic nature in the makeup of the 5' leaders of plant mitochondrial mRNAs and an apparent plasticity in translational control elements. 相似文献
15.
Penaeoidea is a diverse group of economically important marine shrimps. Attention to the evolutionary history of the penaeoids has been raised since studies using mitochondrial DNA markers and sperm ultrastructure contradict classification of the penaeoid families based on morphology and hence challenge the long standing taxonomy of this superfamily. In this study, DNA sequences of two nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and sodium–potassium ATPase α-subunit, were determined from 37 penaeoid genera to reconstruct the evolutionary relationships and to estimate divergence ages of the penaeoid shrimps. Phylogenetic analyses using maximum likelihood and Bayesian approaches strongly support the monophyly of Solenoceridae, Aristeidae and Benthesicymidae, but find Sicyoniidae nested within Penaeidae, making this family paraphyletic. Penaeoidea comprises two lineages: the former three families in one while the latter two in another. The diversification of these lineages may be related to bathymetry. The penaeid-like lineage diversified in the Triassic, earlier than the aristeid-like lineage with an origin in the Jurassic. Taxonomic revisions within Penaeoidea are also proposed for further investigation. Due to the paraphyly of Penaeidae and the high genetic divergence among the three penaeid tribes of Burkenroad [Burkenroad, M.D., 1983. Natural classification of Dendrobranchiata, with a key to recent genera. In: Schram, F.R. (Ed.), Crustacean Issues I. Crustacean Phylogeny. A.A. Balkema, Rotterdam, pp. 279–290], these tribes should be treated as having the same taxonomic rank as Sicyoniidae, while the family ranking of Benthesicymidae has to be re-considered owing to the low genetic divergence between the benthesicymids and the aristeids. 相似文献
16.
Larracuente AM Sackton TB Greenberg AJ Wong A Singh ND Sturgill D Zhang Y Oliver B Clark AG 《Trends in genetics : TIG》2008,24(3):114-123
Several contributing factors have been implicated in evolutionary rate heterogeneity among proteins, but their evolutionary mechanisms remain poorly characterized. The recently sequenced 12 Drosophila genomes provide a unique opportunity to shed light on these unresolved issues. Here, we focus on the role of natural selection in shaping evolutionary rates. We use the Drosophila genomic data to distinguish between factors that increase the strength of purifying selection on proteins and factors that affect the amount of positive selection experienced by proteins. We confirm the importance of translational selection in shaping protein evolution in Drosophila and show that factors such as tissue bias in expression, gene essentiality, intron number, and recombination rate also contribute to evolutionary rate variation among proteins. 相似文献
17.
18.
Zhang MQ 《Nature reviews. Genetics》2002,3(9):698-709
The human genome sequence is the book of our life. Buried in this large volume are our genes, which are scattered as small DNA fragments throughout the genome and comprise a small percentage of the total text. Finding these indistinct 'needles' in a vast genomic 'haystack' can be extremely challenging. In response to this challenge, computational prediction approaches have proliferated in recent years that predict the location and structure of genes. Here, I discuss these approaches and explain why they have become essential for the analyses of newly sequenced genomes. 相似文献
19.
Phylogenetic analyses of the S:, M, and L: genes of the hantaviruses (Bunyaviridae: Hantavirus) revealed three well-differentiated clades corresponding to viruses parasitic on three subfamilies (Murinae, Arvicolinae, and Sigmodontinae) of the rodent family Muridae. In rooted trees of M: and L: genes, the viruses with hosts belonging to Murinae formed an outgroup to those with hosts in Arvicolinae and Sigmodontinae. This phylogeny corresponded with a phylogeny of the murid subfamilies based on mitochondrial cytochrome b sequences, supporting the hypothesis that hantaviruses have coevolved with their mammalian hosts at least since the common ancestor of these three subfamilies, which probably occurred about 50 MYA. The nucleocapsid protein (encoded by the S: gene) differentiated among the viruses parasitic on the three subfamilies in such a way that a high frequency of amino acid residue charge changes occurred in a hypervariable (HV) portion of the molecule, and nonsynonymous nucleotide differences causing amino acid charge changes in the HV region occurred significantly more frequently than expected under random substitution. Along with evidence that at least in some hantaviruses the HV region is a target for host antibodies and the known importance of charged residues in determining antibody epitopes, these results suggest that changes in the HV region may represent adaptation to host-specific characteristics of the immune response. 相似文献
20.
Phylogenetic analysis of ten black yeast species using nuclear small subunit rRNA gene sequences 总被引:5,自引:0,他引:5
G. Haase L. Sonntag Y. van de Peer J. M. J. Uijthof A. Podbielski B. Melzer-Krick 《Antonie van Leeuwenhoek》1995,68(1):19-33
The nuclear small subunit rRNA genes of authentic strains of the black yeastsExophiala dermatitidis, Wangiella dermatitidis, Sarcinomyces phaeomuriformis, Capronia mansonii, Nadsoniella nigra var.hesuelica, Phaeoannellomyces elegans, Phaeococcomyces exophialae, Exophiala jeanselmei var.jeanselmei andE. castellanii were amplified by PCR and directly sequenced. A putative secondary structure of the nuclear small subunit rRNA ofExophiala dermatitidis was predicted from the sequence data. Alignment with corresponding sequences fromNeurospora crassa andAureobasidium pullulans was performed and a phylogenetic tree was constructed using the neighbor-joining method. The obtained topology of the tree was confirmed by bootstrap analysis. Based upon this analysis all fungi studied formed a well-supported monophyletic group clustering as a sister group to one group of the Plectomycetes (Trichocomaceae and Onygenales). The analysis confirmed the close relationship postulated betweenExophiala dermatitidis, Wangiella dermatitidis andSarcinomyces phaeomuriformis. This monophyletic clade also contains the teleomorph speciesCapronia mansonii thus confirming the concept of a teleomorph connection of the genusExophiala to a member of the Herpotrichiellaceae. However,Exophiala castellanii did not belong to this clade. Therefore, this species is not the anamorph ofCapronia mansonii as it was postulated. 相似文献