共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The kinetics of replication for early and late replicating X chromosomes in karyotypically normal fibroblasts and lymphocytes was studied using terminal bromodeoxyuridine (BrdU) treatment followed by Hoechst/light/Giemsa staining. Although the order of band appearance differs between the two tissues, the programme (order and interval between band appearances) for early replicating bands (dark R-bands) is identical in the two homologues. This is probably also the case for later replicating bands (dark G-bands) though the criteria for derermining mean band appearance times are less reliable for these bands when terminal BrdU treatment is used. This means that the late X has a delayed start but thereafter proceeds at the same pace as its early counterpart. 相似文献
2.
The temporal order of replication of specific sites in polytene chromosomes from salivary glands and gastric caeca of Drosophila nasuta larvae was compared using 3H-thymidine autoradiography. Labelling of different cytological regions in segments of chromosome 2R (section 47 A to 49 C) and chromosome 3 (section 80 A to 82 C) was examined in detail in nuclei showing late S-period labelling (2 D and 1D types) in both cell types. The different labelling sites (22 on the 2R segment and 38 on the chromosome 3 segment) are cytologically similar in the two cell types. However, there are profound differences in the labelling frequencies of certain sites in polytene nuclei from salivary glands and gastric caeca during the late S-phase. This suggests that even though a comparable number of chromosomal replicating units operates in the two polytene cell types, the temporal order of completion of replication differs. 相似文献
3.
DNA fibre autoradiography of highly polytenized nuclei in salivary glands of Drosophila nasuta larvae reveals two distinct types of active replicons. Type I replicons are longer (mean size=64 m), have a very high rate of fork migration (average rate=0.95 m/min) and generally occur in large arrays often extending over several thousand m. In contrast, the type II replicons are smaller (mean size= 20 m), slow replicating (average rate=0.07 m/min) and occur in short arrays containing only a few closely spaced active replicons. Evidence is presented that type I replicons are active in the early S and type II in the late S. Observations on autoradiographic labelling of partially lysed polytene chromosomes provide evidence for a lack of temporal and spatial agreement in the activation of origin points in homologous regions of the lateral polytene strands; these observations also suggest local variations in levels of polyteny within a chromosome. On the basis of this and other available information on replication in polytene chromosomes the possible roles of the two replicon types in the generation of the different 3H-thymidine labelling patterns of polytene chromosomes are discussed.We take pleasure in dedicating this paper to our inspiring teacher Prof. S.P. Ray Chaudhuri on his completing 75 years of fruitful life 相似文献
4.
Prolongation of larval life in Drosophila melanogaster, by growing wild type larvae at lower temperature, or in animals carrying the X-linked mutation giant is known to result in a greater proportion of nuclei in salivary glands showing the highest level of polyteny. We have examined by autoradiography the patterns of 3H-thymidine incorporation during 10 min or 1 min pulses in salivary gland polytene chromosomes of older giant larvae and of wild type late third instar larvae of D. melanogaster grown since hatching either at 24 ° C or at 10 ° C. The various patterns of labelling and their relative frequencies are generally similar in glands from the warm-(24 ° C) or cold (10 ° C)-reared wild type larvae, except the interband (IB) labelling patterns which are very frequent in the later group but rare in the former. The IB type labelled nuclei in cold-reared wild type larvae show labelling ranging from only a few puffs/interbands labelled to nearly all puffs/interbands labelled. In warm-reared wild type larvae, very low labelled IB patterns are not seen. In older giant larvae, the 3H-thymidine labelling patterns are in most respects similar to those seen in cold-reared wild type larvae. In 1 min pulsed preparations from all larvae, the IB patterns are relatively more frequent than in corresponding 10 min pulsed preparations. No nuclei with the continuous (2C or 3C) type of labelling pattern, with all bands and interbands/puffs labelled, were seen in 1 min pulsed preparations from cold-reared wild type or in giant larvae, and only a few nuclei in 1 min pulsed preparations from warm-reared wild type larvae exhibited the 2C labelling pattern. Analysis of silver grain density on specific late replicating sites in late discontinuous (1D) type labelled nuclei suggests that the rate of DNA synthesis per chromosomal site is not different at the two developmental temperatures. It is suggested that correlated with the prolongation of larval life under cold-rearing conditions or in giant larvae, the polytene replication cycles are also prolonged. It is further suggested that the polytene S-period in these larvae is longer due to a considerable asynchrony in the initiation and termination of replication of different sites during a replication cycle. 相似文献
5.
S. C. Lakhotia 《Chromosoma》1984,89(1):63-67
It is widely known that the bulk of the pericentromeric heterochromatin (-heterochromatin) does not replicate during polytenization in Drosophila. However, a recent DNA-Feulgen cytophotometric study (Dennhöfer 1982a) has claimed equal polytenization of all heterochromatin regions. To re-examine this issue, the amount of Hoechst 33258-bright heterochromatin in non-polytene and polytene nuclei in salivary glands and Malpighian tubules of late third instar larvae of D. nasuta has been compared by cytofluorometry. Since the amount of Hoechst 33258-bright heterochromatin is similar in non-polytene and polytene nuclei in spite of the latter having an enormously high euchromatin DNA content, it is concluded that the -heterochromatin does not replicate during polytenization. The present results further indicate that in the polytene nuclei of Malpighian tubules the -heterochromatin remains at the 2C level whereas in salivary gland polytene nuclei it varies between the 2C and 4C levels.I would like to dedicate this paper to the memory of E. Heitz to commemorate 50 years of - and -heterochromatin 相似文献
6.
7.
The replication pattern of the X and Y chromosomes at the beginning of the synthetic phase was studied in human lymphocyte cultures partially synchronized by the addition of 5-fluoro-2-deoxyuridine (FUdR). The data were evaluated statistically by an analysis of the distribution of silver grain counts over the X and Y chromosomes. —In cells from normal females, one of the X chromosomes began replication later than any other chromosomes of the complement. The short arm of the late replicating X chromosome started replication earlier than the long arm. The telomeric region of the short arm was a preferential site of DNA synthesis at the beginning of replication. —In partially synchronized lymphocyte cultures from a patient with the XXY syndrome, the Y chromosome started replication together with the late replicating X chromosome. The Y chromosome most frequently replicated synchronously with the short arm of the X. The centromeric region of the Y chromosome initiated synthesis before the telomeric region and appeared to replicate synchronously with the telomeric region of the short arm of the X. These findings are discussed with reference to the pairing of the X and Y chromosomes at meiosis.Supported in part by the National Institute of Health Research Grant HD-01979 and National Foundation Birth Defects Research Grant CRCS-40. Dr. Knight was a predoctoral fellow under National Institute of Health Training Program HD-00049-09. 相似文献
8.
Stephen Kearsey 《BioEssays : news and reviews in molecular, cellular and developmental biology》1986,4(4):157-161
DNA replication initiates at many sites in eukaryotic chromosomes. It has been difficult to isolate such replication origins, but a family of sequences from the yeast genome have properties which suggest that they may serve this function. The identification of these sequences together with sophisticated methods of genetic analysis, make yeast a useful organism for the study of eukaryotic DNA replication. 相似文献
9.
A study of sedimentation and buoyant density of Okazaki fragments from mammalian chromosomes along with electron microscopic studies indicate that fragments from about 200 to 1200 nucleotides long may have RNA segments covalently attached. The fragments in some CsCl isopycnic gradients banded in two rather distinct bands. One band corresponds to the density of single-stranded DNA, but the other has a higher buoyant density which could be conferred by a segment of RNA up to 180 nucleotides or more in length. The RNA was not removed by denaturing conditions which separated DNA strands consisting of several thousand nucleotide pairs. When the material of higher buoyant density was spread for electron microscopy under conditions which would extend single-stranded DNA chains, but leave RNA in a coil or bush the chains with a higher buoyant density usually had a bush attached at one end. Under conditions that were thought to favor gap filling over chain elongation near growing forks, the DNA produced by pulse labeling with bromodeoxyuridine had a buoyant density which would indicate substitution to about 15 percent in one chain. If this substitution represents filling of gaps occupied by RNA before the pulse, the segments would be about 180 nucleotides in length assuming about 1,000 nucleotides between each segment. 相似文献
10.
DNA replication has been studied in cells (CHO) synchronized by mitotic selection from roller cultures. A study of the incorporation of 3H supplied as uridine indicates that cells cannot be blocked precisely at the beginning of the S phase, but DNA synthesis can be stopped in early S by treating with F-dU in G1. After blockage potential initiation sites continue to increase at a linear rate for atleast 13 hours after division. Incorporation of 3H-thymidine begins at most of these sites within seconds after thymidine is supplied in the medium and incorporation continues at a linear rate for 20–24 minutes. There appears to be a pause after this interval before synthesis is resumed at about two times the initial rate. 3H-bromodeoxyuridine can be substituted for thymidine without affecting the kinetic pattern over a similar period. The increased rate is probably an increase in sites of chain growth rather than a change in rate of chain growth. A study of the labeled DNA segments by band sedimentation in a preformed NaClO4 isokinetic gradient shows that two distinctly different sized segments can be released from the chromosomes by lysis at submelting conditions. One is the previously reported single chain segments averaging about one-half micron in length, but the other is a much larger segment (26S) which is native DNA with perhaps small regions of single chains presumably at the ends. Primarily single chain DNA is released after 1–2 minute pulse labeling, but after 2 minutes the larger segments (26S) contain most of the newly formed DNA except that attached to the chains of the major part of the template DNA which exhibits a discontinuous distribution, sedimenting far faster than either newly replicated segment. A consideration of the kinetics of formation of the 26S component indicates that is may contain the replicating fork. If this proves to be the correct interpretation the template chains would both have non-adjacent nicks preceeding the fork and also in a post-fork site at a mean distance of about 2 microns in both directions. The isolation of the growing points of DNA replication in chromosomes is now possible and the study of properties of the newly replicated regions should be greatly facilitated. 相似文献
11.
Summary Complete hydatidiform moles contain only paternal chromosomes. To learn more of their origin, we used restriction endonuclease site polymorphisms found in the parental mitochondrial DNAs to demonstrate that moles contain exclusively maternal mitochondrial DNA. Thus, moles must arise from the fusion of one or two sperm with a mature but anucleate ovum. 相似文献
12.
13.
14.
Leach TJ Chotkowski HL Wotring MG Dilwith RL Glaser RL 《Molecular and cellular biology》2000,20(17):6308-6316
Heterochromatin is characteristically the last portion of the genome to be replicated. In polytene cells, heterochromatic sequences are underreplicated because S phase ends before replication of heterochromatin is completed. Truncated heterochromatic DNAs have been identified in polytene cells of Drosophila and may be the discontinuous molecules that form between fully replicated euchromatic and underreplicated heterochromatic regions of the chromosome. In this report, we characterize the temporal pattern of heterochromatic DNA truncation during development of polytene cells. Underreplication occurred during the first polytene S phase, yet DNA truncation, which was found within heterochromatic sequences of all four Drosophila chromosomes, did not occur until the second polytene S phase. DNA truncation was correlated with underreplication, since increasing the replication of satellite sequences with the cycE(1672) mutation caused decreased production of truncated DNAs. Finally, truncation of heterochromatic DNAs was neither quantitatively nor qualitatively affected by modifiers of position effect variegation including the Y chromosome, Su(var)205(2), parental origin, or temperature. We propose that heterochromatic satellite sequences present a barrier to DNA replication and that replication forks that transiently stall at such barriers in late S phase of diploid cells are left unresolved in the shortened S phase of polytene cells. DNA truncation then occurs in the second polytene S phase, when new replication forks extend to the position of forks left unresolved in the first polytene S phase. 相似文献
15.
Summary The polymorphism of HLA antigens was used as a marker to investigate the genetic origin of hydatidiform moles in Senegal. An androgenetic etiology was demonstrated. When both parents shared HLA antigens a preferential inheritance in the mole of the shared specificities was observed. This relative compatibility of the molar conceptus with the mother may be an element of the process that prevents its early rejection. 相似文献
16.
18.
Molecular phylogenetic relationships among Asiatic shrewlike moles inferred from the complete mitogenomes 下载免费PDF全文
Robert W. Murphy Shunde Chen Xiuyue Zhang Chaochao Yan Yang Liu Zhiyu Sun Jianrong Fu Shaoying Liu Bisong Yue 《Journal of Zoological Systematics and Evolutionary Research》2015,53(2):155-160
Asiatic shrewlike moles are distributed almost entirely in south‐west China; four of the five species of the genus Uropsilus, Uropsilus aequodonenia, U. andersoni, U. investigator and U. soricipes are endemic to China. Excluding the five species, three cryptic species (U. sp. 1, U. sp. 2 and U. sp. 3) and two putative species, U. nivatus and U. atronates, are recognized. The phylogenetic relationships among the species remain unclear and these preclude investigations of their potential adaptations for living in high altitudes. We sequenced the complete mitochondrial DNA genomes of three species of Asiatic shrewlike moles (U. aequodonenia, U. andersoni and U. nivatus). Phylogenetic analyses of 16 published and our de novo mitogenomes yield single, robust trees with the relationships being (U. soricipes (U. sp. 1 (U. nivatus (U. andersoni, U. aequodonenia)))). Further, the tree verifies the validity of recently described U. aequodonenia. Analyses of selection pressure suggest that the 13 mtDNA‐encoding genes of species in the genus Uropsilus all have experienced strong purifying selection, although ATP8 accumulated a higher ratio of non‐synonymous substitutions than the other loci, which might reflect adaptation of the genus Uropsilus to different environments/elevations. 相似文献
19.
Paternal origins of complete hydatidiform moles proven by whole genome single-nucleotide polymorphism haplotyping 总被引:2,自引:0,他引:2
Fan JB Surti U Taillon-Miller P Hsie L Kennedy GC Hoffner L Ryder T Mutch DG Kwok PY 《Genomics》2002,79(1):58-62
Complete hydatidiform moles (CHMs) are diploid tumors that result from fertilization of an empty ovum by a haploid 23,X sperm. In most cases, the resulting duplication of the genome gives rise to a 46,XX genotype and is thought to be androgenetic in origin. If this hypothesis is correct, then the genotypes of all polymorphic markers in CHMs should be homozygous. We used a dense set of single-nucleotide polymorphism (SNP) markers, evenly spaced throughout the genome, to definitively test this hypothesis. We genotyped genomic DNA samples from five CHMs and their corresponding maternal samples with 1494 SNP markers using high-density microarrays (HuSNP). As predicted, the maternal samples were heterozygous at >25% of the markers, which is consistent with the expected average heterozygosity of this panel of SNPs. In contrast, the five CHM samples were heterozygous at <0.75% of the SNP markers, which shows that these diploid tumors consist of a duplicated set of chromosomes. Because the CHM genotypes represent the haplotypes of their genomes, our results show that long-range haplotypes can be obtained easily with this resource and that a collection of such samples is a simple way to obtain reference haplotypes for association studies in various populations. 相似文献
20.