共查询到20条相似文献,搜索用时 0 毫秒
1.
Previous studies, including those done with a similar species, have indicated that dihydrouracil is formed by the breakdown of uracil and is degraded into N-carbamyl-beta-alanine. (Fink et al., J. Biol. Chem. 201:349-355, 1953; S. R. Vilks and M. Y. Vitols, Mikrobiologiya 42:567-583, 1973; O. A. Milstein and M. L. Bekker, J. Bacteriol. 127:1-6, 1976). In the present work the conversion of dihydrouracil to uracil is studied in Rhodosporidium toruloides, and the growth characteristics of mutants that have lost the ability to use dihydrouracil as a source of nitrogen are examined. It is concluded that dihydrouracil must be converted to uracil before catabolism of the pyrimidine ring can take place. 相似文献
2.
Rhodosporidium toruloides protoplasts could be transformed, in the presence of polyethylene glycol (PEG), at frequencies of approx. 1 X 10(3) transformants/micrograms of DNA. The plasmid used, pHG2, which contains the phenylalanine ammonia-lyase (PAL)-coding gene (PAL) of R. toruloides, could replicate as an unstable plasmid in the yeast, or could integrate at the PAL locus to give stable transformants. Plasmids that function in R. toruloides were constructed using either the PAL gene or LEU2 gene of Saccharomyces cerevisiae as dominant selectable markers. R. toruloides transformed with pHG8, which contains both genes, coinherited the two markers. It is also shown that the 2mu replicon of S. cerevisiae does not function in R. toruloides; neither is the PAL gene expressed in S. cerevisiae. 相似文献
3.
A trypsin-type endopeptidase (Kamiya et al., Biochem. Biophys. Res. Commun. 94:855-860, 1980) responsible for the metabolism of rhodotorucine A, the farnesyl undecapeptide mating pheromone secreted by mating type A cells of Rhodosporidium toruloides, was biologically characterized. Metabolic activity was found to be present exclusively on the cell surface of the pheromone target cell. The activity was highly specific to the pheromone, and a biologically inactive analog which has the complete amino acid sequence of rhodotorucine A but lacks the farnesyl residue was not metabolized by intact cells. Pheromone metabolism was inhibited by trypsin substrates such as tosyl-L-arginine methyl ester. The presence of tosyl-L-arginine methyl ester strongly inhibited the sexual differentiation induced by the pheromone at a concentration which did not affect the vegetative growth of R. toruloides. Pheromone-induced sexual differentiation was also strongly inhibited by a metabolizable analog, rhodotorucine A S-oxide, but not by a non-metabolizable one. In mutants defective in early processes of mating, the decrease in the pheromone metabolic activity correlated well with the extent of loss of sensitivity to the pheromone. Both the pheromone metabolism and the capacity for sexual differentiation of a sterile mutant were restored concomitantly with reversion from the sterile to the fertile phenotype. These results suggested that metabolism of the mating pheromone plays an essential role in the process of sexual differentiation in R. toruloides. 相似文献
4.
Höfer et al. (Biochem. Biophys. Acta 1971. 252:1-12) presented circumstantial evidence that suggested that Rhodosporidium toruloides produced a xylose isomerase. We were unable to detect this activity in cell-free extracts of this yeast, however, xylose reductase and xylitol dehydrogenase activities were detected. 相似文献
6.
The regulation of the enzyme phenylalanine ammonia-lyase (PAL), which is of potential use in oral treatment of phenylketonuria, was investigated. Antiserum against PAL was prepared and was shown to be monospecific for the enzyme by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native enzyme and two inactive mutant forms of the enzyme were purified to homogeneity by immunoaffinity chromatography, using anti-PAL immunoglobulin G-Sepharose 4B. Both mutant enzymes contained intact prosthetic groups. The formation of PAL catalytic activity after phenylalanine was added to yeast cultures was paralleled by the appearance of enzyme antigen. During induction, uptake of [3H]leucine into the enzyme was higher than uptake into total protein. Our results are consistent with de novo synthesis of an enzyme induced by phenylalanine, rather than activation of a proenzyme. The half-lives of PAL and total protein were similar in both exponential and stationary phase cultures. No metabolite tested affected the rate of enzyme degradation. Glucose repressed enzyme synthesis, whereas ammonia reduced phenylalanine uptake and pool size and so may repress enzyme synthesis through inducer exclusion. The synthesis of enzyme antigen by a mutant unable to metabolize phenylalanine indicated that this amino acid is the physiological inducer of the enzyme. 相似文献
7.
The involvement of protein sulfhydryls for the signaling of rhodotorucine A, a mating pheromone produced by mating type A cells of Rhodosporidium toruloides, was investigated by the use of sulfhydryl compounds. The sulfhydryl-blocking reagent 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB; Ellman's reagent) strongly inhibited both the biological effect of the pheromone on the recipient cell and the hydrolysis of the pheromone, which is catalyzed by the mating type-specific surface endopeptidase of the recipient cell. Conversely, the two reactions were markedly enhanced by the presence of the reducing reagent dithiothreitol. The inhibitory effect of DTNB on the pheromone response of the recipient cell was specific to an initial stage of the differentiation; once it had initiated, the reagent had no effect on its progression. The results suggested that dithiothreitol enhances and DTNB impairs the efficiency with which the pheromone triggers sexual d differentiation. The reaction of DTNB with cellular protein sulfhydryls was highly restricted to those at the exterior surface of the membrane due to the impermeability of the reagent through the membrane. Phosphorylation of endogenous proteins, which is modulated by the pheromone added to an in vitro phosphorylation system, was also blocked by DTNB. The results showed that sulfhydryl groups are involved in the pheromone hydrolysis by the surface endopeptidase of the recipient cell and that pheromone metabolism is indispensable for the signaling reaction. We suggest that the modulation of protein phosphorylation of membrane proteins by the pheromone is an initial transmembrane response coupled to pheromone metabolism. 相似文献
9.
Urea has been shown to be an obligate intermediate in and the penultimate product of the catabolism of pyrimidine-ring nitrogen in Rhodosporidium toruloides (Rhodotorula). One of a series of mutants selected for its inability to utilize uracil as a sole source of nitrogen was unable to utilize urea also. The mutant accumulated urea and failed to form 14CO2 during supplementation with [2-14C]uracil. Radioautograms from the resulting cell extracts and media failed to reveal expected intermediates. Cell-free extracts of the mutant were shown to lack urease activity. Revertants of the mutant were essentially wild type in all tested attributes. Elements of the reductive pathway for pyrimidine catabolism are present in Rhodosporidium (O. A. Milstein and M. L. Bekker, J. Bacteriol. 127: 1-6, 1976), but is has not been determined whether this pathway is involved with production of urea. 相似文献
10.
A mating-type-specific, membrane thiol peptidase (referred to as trigger peptidase) that seems to play a key role in the transmembrane signaling of the lipopeptidyl mating pheromone rhodotorucine A at the cell surface of mating type a cells of Rhodosporidium toruloides (T. Miyakawa, M. Kaji, T. Yasutake, Y.K. Jeong, E. Tsuchiya, and S. Fukui, J. Bacteriol. 162:294-299, 1985) was purified to homogeneity and characterized. The following lines of evidence support the contention that the enzyme we purified was the trigger peptidase: the identical specificity of hydrolysis at the Arg-Asn sequence of rhodotorucine A and the sensitivity of the reaction to sulfhydryl-blocking reagents; the identical specificity for the substrate, with a strict requirement for the presence of the lipid moiety; and the absence of the corresponding activity in the pheromone-producing strain (mating type A) and in a sterile mutant strain, M-39 (type a), that lacks trigger peptidase activity in vivo. The apparent molecular weight of trigger peptidase was estimated to be 68,000 by Sepharose 6B gel filtration in the presence of octylglucoside and 63,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trigger peptidase alone was inactive but exhibited enzymatic activity with the simultaneous addition of Ca2+, membrane phospholipids, and a nonionic detergent such as octylglucoside. The concentration of Ca2+ required for maximum activation was approximately 1 mM. Only Mn2+ could replace Ca2+ at comparable concentrations. Among the phospholipids tested, only phosphatidylserine and phosphatidylethanolamine supported trigger peptidase activation. Solubilized trigger peptidase was strongly inhibited by antipain and phosphoramidon. 相似文献
11.
Residue-specific chemical modification of amino acid residues of the microsomal epoxide hydrolase (mEH) from Rhodosporidium toruloides UOFS Y-0471 revealed that the enzyme is inactivated through modification of Asp/Glu and His residues, as well as through modification of Ser. Since Asp acts as the nucleophile, and Asp/Glu and His serve as charge relay partners in the catalytic triad of microsomal and soluble epoxide hydrolases during epoxide hydrolysis, inactivation of the enzyme by modification of the Asp/Glu and His residues agrees with the established reaction mechanism of these enzymes. However, the inactivation of the enzyme through modification of Ser residues is unexpected, suggesting that a Ser in the catalytic site is indispensable for substrate binding by analogy of the role of Ser residues in the related L-2-haloacid dehalogenases, as well as the ATPase and phosphatase enzymes. Co 2+, Hg 2+, Ag +, Mg 2+ and Ca 2+ inhibited enzyme activity and EDTA increased enzyme activity. The activation energy for inactivation of the enzyme was 167 kJ mol –1. Kinetic constants for the enzyme could not be determined since unusual behaviour was displayed during hydrolysis of 1,2-epoxyoctane by the purified enzyme. Enantioselectivity w as strongly dependent on substrate concentration. When the substrate was added in concentrations ensuring two-phase conditions, the enantioselectivity was greatly enhanced. On the basis of these results, it is proposed that this enzyme acts at an interface, analogous to lipases. 相似文献
12.
The role of Ca2+ for the signaling of rhodotorucine A, a mating pheromone of Rhodosporidium toruloides, was investigated. The efficiency with which the target cells responded to the mating pheromone was dependent on the Ca2+ concentration in the medium. The pheromone induced a very rapid and transient increase of Ca2+ uptake in the recipient cell. We concluded that the transient increase in the intracellular Ca2+ concentration could play an essential role in the control of differentiation by the pheromone. 相似文献
14.
We report the de novo assembled 20.05-Mb draft genome of the red yeast Rhodosporidium toruloides MTCC 457, predicted to encode 5,993 proteins, 4 rRNAs, and 125 tRNAs. Proteins known to be unique to oleaginous fungi are present among the predicted proteins. The genome sequence will be valuable for molecular genetic analysis and manipulation of lipid accumulation in this yeast and for developing it as a potential host for biofuel production. 相似文献
15.
Summary The active sites of the enzyme phenylalanine ammonia-lyase (Pal) from Rhodosporidium toruloides contains a dehydroalanine residue that is believed to be essential for catalytic activity. Furthermore, the dehydroalanine is believed to be added post-translationally as part of a prosthetic group covalently attached to the enzyme. Perhaps for this reason no attempts to produce Pal in foreign host cells have been reported. We have inserted the entire uninterupted pal gene from R. toruloides into the Escherichia coli expression vector pKK 223-3. E. coli cells containing this vector synthesize a protein of the expected size, and extracts prepared from these cells contain a Pal-like activity. The potential implications of this finding are discussed.Offprint requests to: H. Ørum 相似文献
16.
Interaction with phospholipids of a membrane thiol peptidase [referred to as trigger peptidase (TPase), T. Miyakawa et al. (1987) J. Bacteriol. 169, 1626-1631] that plays a key role in the signalling of a lipopeptidyl mating pheromone at the cell surface of pheromone-target cell (mating type a) of Rhodosporidium toruloides was studied. The activity of highly purified TPase which requires phospholipids was restored by reconstitution of the enzyme into liposomes prepared with phospholipids extracted from the yeast cell. The presence of Ca2+ was essential for both the reconstitution process and the catalytic reaction of TPase. Triton X-100 mixed micelles containing phospholipids also activated the enzyme. The specificity and stoichiometry of activation by phospholipids was investigated by determination of TPase in the presence of mixed micelles that contained defined classes and numbers of phospholipid molecules in the Triton X-100 micelles. It was demonstrated that TPase is activated by mixed micelles containing 2-6 molecules of phosphatidylserine or phosphatidylethanolamine. Other phospholipids of the membranes of this organism, such as phosphatidylcholine and phosphatidylglycerol, had little effect on activation, indicating that the amino group of the phospholipids may be required for the function of TPase. Direct evidence for the interaction of TPase and Triton X-100/phosphatidylserine mixed micelles was obtained by molecular sieve chromatography on Sephacryl S-200. These data established that a phospholipid bilayer is not a requirement for TPase activation, and that the purified enzyme can be activated by a relatively small number of phospholipid molecules of specific classes. 相似文献
17.
Lipid production by the red yeast Rhodosporidium toruloides was explored under nutrient limitation. To determine the compositional profiles of R. toruloides cells, samples were prepared using a continuous cultivation process under nutrient limitation and analyzed via several methods, including Fourier transform infrared spectroscopy and elemental analysis. Under nitrogen limitation, as the dilution rate increased, the cellular lipid content decreased but the carbohydrate and protein contents increased. Under carbon limitation, the cellular lipid, protein, and carbohydrate contents remained relatively constant at the different dilution rates. Moreover, the cellular elemental composition was essentially identical under nitrogen and carbon limitation at a high dilution rate of 0.20 h−1. We also analyzed the consumed carbon to nitrogen (C/N) under different nutrition conditions. The results indicated that the consumed C/N had a major influence on cell metabolism and product formation, which contributed to our understanding of the physiological characteristics of R. toruloides. 相似文献
|