首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydrostreptomycin binds preferentially to chloroplast ribosomes of wild-type Euglena gracilis Klebs var. bacillaris Pringsheim. The K(diss) for the wild-type chloroplast ribosome-dihydrostreptomycin complex is 2 x 10(-7) M, a value comparable with that found for the Escherichia coli ribosome-dihydrostreptomycin complex. Chloroplast ribosomes isolated from the streptomycin-resistant mutant Sm(1) (r)BNgL and cytoplasmic ribosomes from wild-type have a much lower affinity for the antibiotic. The K(diss) for the chloroplast ribosome-dihydrostreptomycin complex of Sm(1) (r) is 387 x 10(-7) M, and the value for the cytoplasmic ribosome-dihydrostreptomycin complex of the wild type is 1,400 x 10(-7) M. Streptomycin competes with dihydrostreptomycin for the chloroplast ribosome binding site, and preincubation of streptomycin with hydroxylamine prevents the binding of streptomycin to the chloroplast ribosome. These results indicate that the inhibition of chloroplast development and replication in Euglena by streptomycin and dihydrostreptomycin is related to the specific inhibition of protein synthesis on the chloroplast ribosomes of Euglena.  相似文献   

2.
Cytoplasmic and chloroplast ribosomal proteins were isolated from Euglena gracilis and analyzed on polyacrylamide gels. Cytoplasmic ribosomes appear to contain 75 to 100 proteins ranging in molecular weight from 10,200 to 104,000, while chloroplast ribosomes appear to contain 35 to 42 proteins with molecular weights ranging from 9,700 to 57,900. This indicates that the cytoplasmic ribosomes are similar in composition to other eucaryotic ribosomes, while chloroplast ribosomes have a protein composition similar to the 70S procaryotic ribosome. The kinetics of light-induced labeling of cytoplasmic ribosomal proteins during chloroplast development has been determined, and the results are compared with the kinetics of ribosomal RNA synthesis.  相似文献   

3.
4.
Short pulses with 3H-guanine given to logarithmically growing Euglena gracilis result in RNAse insensitive labelling in nucleus and cytoplasm. Part of the labelled material in the cytoplasm apparently turns over and is re-used for synthesis. The percentage of RNAse insensitive label in the nucleus increases from 20% to 60% during growth in cold medium after the pulse. This is either due to transfer of labelled material between different fractions within the nucleus or transfer of material from cytoplasm to nucleus.  相似文献   

5.
6.
7.
There are two isoforms of cytoplasmic arginyl-tRNA synthetase (hcArgRS) in human cells. The long form is a component of the multiple aminoacyl-tRNA synthetase complex, and the other is an N-terminal truncated form (ΔNhcArgRS), free in the cytoplasm. It has been shown that the two forms of ArgRS arise from alternative translational initiation in a single mRNA. The short form is produced from the initiation at a downstream, in-frame AUG start codon. Interestingly, our data suggest that the alternative translational initiation of hcArgRS mRNA also takes place in Escherichia coli transformants. When the gene encoding full-length hcArgRS was overexpressed in E. coli, two forms of hcArgRS were observed. The N-terminal sequencing experiment identified that the short form was identical to the ΔNhcArgRS in human cytoplasm. By constructing a bicistronic system, our data support that the mRNA encoding the N-terminal extension of hcArgRS has the capacity of independently recruiting E. coli ribosomes. Furthermore, two critical elements for recruiting prokaryotic ribosomes were identified, the “AGGA” core of the Shine-Dalgarno sequence and the “A-rich” sequence located just proximal to the alternative in-frame initiation site. Although the mechanisms of prokaryotic and eukaryotic translational initiation are distinct, they share some common features. The ability of the hcArgRS mRNA to recruit the prokaryotic ribosome may provide clues for shedding light on the mechanism of alternative translational initiation of hcArgRS mRNA in eukaryotic cells.  相似文献   

8.
The 5-HT3A receptor homology model, based on the partial structure of the nicotinic acetylcholine receptor from Torpedo marmorata, reveals an asymmetric ion channel with five portals framed by adjacent helical amphipathic (HA) stretches within the 114-residue loop between the M3 and M4 membrane-spanning domains. The positive charge of Arg-436, located within the HA stretch, is a rate-limiting determinant of single channel conductance (γ). Further analysis reveals that positive charge and volume of residue 436 are determinants of 5-HT3A receptor inward rectification, exposing an additional role for portals. A structurally unresolved stretch of 85 residues constitutes the bulk of the M3-M4 loop, leaving a >45-Å gap in the model between M3 and the HA stretch. There are no additional structural data for this loop, which is vestigial in bacterial pentameric ligand-gated ion channels and was largely removed for crystallization of the Caenorhabditis elegans glutamate-activated pentameric ligand-gated ion channels. We created 5-HT3A subunit loop truncation mutants, in which sequences framing the putative portals were retained, to determine the minimum number of residues required to maintain their functional integrity. Truncation to between 90 and 75 amino acids produced 5-HT3A receptors with unaltered rectification. Truncation to 70 residues abolished rectification and increased γ. These findings reveal a critical M3-M4 loop length required for functions attributable to cytoplasmic portals. Examination of all 44 subunits of the human neurotransmitter-activated Cys-loop receptors reveals that, despite considerable variability in their sequences and lengths, all M3-M4 loops exceed 70 residues, suggesting a fundamental requirement for portal integrity.  相似文献   

9.
Structural organization of developing chloroplasts in Euglena   总被引:5,自引:0,他引:5  
I Ophir  Y Ben-Shaul 《Protoplasma》1974,80(1):109-127
  相似文献   

10.
The archaeal ribosomal stalk complex has been shown to have an apparently conserved functional structure with eukaryotic pentameric stalk complex; it provides access to eukaryotic elongation factors at levels comparable to that of the eukaryotic stalk. The crystal structure of the archaeal heptameric (P0(P1)2(P1)2(P1)2) stalk complex shows that the rRNA anchor protein P0 consists of an N-terminal rRNA-anchoring domain followed by three separated spine helices on which three P1 dimers bind. Based on the structure, we have generated P0 mutants depleted of any binding site(s) for P1 dimer(s). Factor-dependent GTPase assay of such mutants suggested that the first P1 dimer has higher activity than the others. Furthermore, we constructed a model of the archaeal 50 S with stalk complex by superposing the rRNA-anchoring domain of P0 on the archaeal 50 S. This model indicates that the C termini of P1 dimers where translation factors bind are all localized to the region between the stalk base of the 50 S and P0 spine helices. Together with the mutational experiments we infer that the functional significance of multiple copies of P1 is in creating a factor pool within a limited space near the stalk base of the ribosome.  相似文献   

11.
The chloroplasts of Euglena gracilis bounded by three membranes arose via secondary endosymbiosis of a green alga in a heterotrophic euglenozoan host. Many genes were transferred from symbiont to the host nucleus. A subset of Euglena nuclear genes of predominately symbiont, but also host, or other origin have obtained complex presequences required for chloroplast targeting. This study has revealed the presence of short introns (41–93 bp) either in the second half of presequence-encoding regions or shortly downstream of them in nine nucleus-encoded E. gracilis genes for chloroplast proteins (Eno29, GapA, PetA, PetF, PetJ, PsaF, PsbM, PsbO, and PsbW). In addition, the E. gracilis Pbgd gene contains two introns in the second half of presequence-encoding region and one at the border of presequence-mature peptide-encoding region. Ten of 12 introns present within presequence-encoding regions or shortly downstream of them identified in this study have typical eukaryotic GT/AG borders, are T-rich, 45–50 bp long, and pairwise sequence identities range from 27 to 61%. Thus single recombination events might have been mediated via these cis-spliced introns. A double crossing over between these cis-spliced introns and trans-spliced introns present in 5′-UTRs of Euglena nuclear genes is also likely to have occurred. Thus introns and exon-shuffling could have had an important role in the acquisition of chloroplast targeting signals in E. gracilis. The results are consistent with a late origin of photosynthetic euglenids.  相似文献   

12.
A scheme has been worked out for the regulation of early ribosomal RNA synthesis and ribosome assembly during the first 12 h of germination.  相似文献   

13.
14.
Binding sites on intracellular membranes in rat fiver cells seem to be sex specific. Activation of isolated endoplasmic reticulum depends on oestradiol in the male and on testosterone in the female.  相似文献   

15.

Background

VICKZ (IGF2BP1,2,3/ZBP1/Vg1RBP/IMP1,2,3) proteins bind RNA and help regulate many RNA-mediated processes. In the midbrain region of early chick embryos, VICKZ is expressed in the neural folds and along the basal surface of the neural epithelium, but, upon neural tube closure, is down-regulated in prospective cranial neural crest (CNC) cells, concomitant with their emigration and epithelial-to-mesenchymal transition (EMT). Electroporation of constructs that modulate cVICKZ expression demonstrates that this down-regulation is both necessary and sufficient for CNC EMT. These results suggest that VICKZ down-regulation in CNC cell-autonomously promotes EMT and migration. Reduction of VICKZ throughout the embryo, however, inhibits CNC migration non-cell-autonomously, as judged by transplantation experiments in Xenopus embryos.

Results and Conclusions

Given the positive role reported for VICKZ proteins in promoting cell migration of chick embryo fibroblasts and many types of cancer cells, we have begun to look for specific mRNAs that could mediate context-specific differences. We report here that the laminin receptor, integrin alpha 6, is down-regulated in the dorsal neural tube when CNC cells emigrate, this process is mediated by cVICKZ, and integrin alpha 6 mRNA is found in VICKZ ribonucleoprotein complexes. Significantly, prolonged inhibition of cVICKZ in either the neural tube or the nascent dermomyotome sheet, which also dynamically expresses cVICKZ, induces disruption of these epithelia. These data point to a previously unreported role for VICKZ in maintaining epithelial integrity.  相似文献   

16.
During spermatogenesis, the blood-testis barrier (BTB) segregates the adluminal (apical) and basal compartments in the seminiferous epithelium, thereby creating a privileged adluminal environment that allows post-meiotic spermatid development to proceed without interference of the host immune system. A key feature of the BTB is its continuous remodeling within the Sertoli cells, the major somatic component of the seminiferous epithelium. This remodeling is necessary to allow the transport of germ cells towards the seminiferous tubule interior, while maintaining intact barrier properties. Here we demonstrate that the actin nucleation promoting factor Neuronal Wiskott-Aldrich Syndrome Protein (N-WASP) provides an essential function necessary for BTB restructuring, and for maintaining spermatogenesis. Our data suggests that the N-WASP-Arp2/3 actin polymerization machinery generates branched-actin arrays at an advanced stage of BTB remodeling. These arrays are proposed to mediate the restructuring process through endocytic recycling of BTB components. Disruption of N-WASP in Sertoli cells results in major structural abnormalities to the BTB, including mis-localization of critical junctional and cytoskeletal elements, and leads to disruption of barrier function. These impairments result in a complete arrest of spermatogenesis, underscoring the critical involvement of the somatic compartment of the seminiferous tubules in germ cell maturation.  相似文献   

17.
To provide a molecular explanation of the role of the disulfide (SS) bridge in the thermostability and structural integrity of ovalbumin (OVA), we prepared SS-mutated OVAs in which SS-forming residues were replaced by Ala or Ser (C73A, C73S, C120A, and C73/120A), and compared the conformation, thermostability, susceptibility to elastase, and formation of heat-stable OVA (S-OVA) with those of the wild-type. The circular dichroism (CD) and tryptophan fluorescence spectra revealed that the SS-mutated OVAs assumed a native-like conformation similar to the wild-type. The thermal denaturation temperature for the SS-mutated OVAs was significantly lower than that for the wild-type. C73S, C120A, and C73/120A mutants converted to S-OVA on alkaline treatment. Analyses for elastase digestion fragments showed that a non-native SS bridge was generated in all SS-mutated OVAs, but non-native SS-pairing did not contribute to thermostability. Hence, we concluded that the presence of the original SS bridge in OVA contributes to conformational stability but is not directly related to the conversion to S-OVA.  相似文献   

18.
Antigen-specific T cell responses can be visualized using MHC:peptide multimers. In cases where robust T cell controls are not readily available to assess the integrity of multimer reagents prior to analyzing limited sample, the ability to assess the structural integrity of MHC multimers before their use in critical experiments would be useful. We present a method to probe the structural integrity of MHC multimers using antibodies specific for conformational determinants. Beads coated with anti-mouse Ig are incubated with conformation-specific mouse monoclonal antibody and then with fluorescently tagged MHC multimer. The ability of the bead to capture the labeled multimer can be measured semi-quantitatively by flow cytometry. In this manner, the correct folding of MHC multimers can be visualized and batches of multimer can be compared for quality control. Because there are multiple conformational epitopes formed by various molecular interactions among heavy chain, peptide, and β2M, this capture assay can assess the fidelity of each aspect of multimer structure, depending on the availability of antibodies. The described approach could be particularly useful for studies using irreplaceable samples, including patient samples collected in clinical trials.  相似文献   

19.
Twenty-seven cold-sensitive mutants of Neurospora crassa were isolated by mutagenesis of wild-type conidia followed by filtration enrichment in complete medium at the nonpermissive temperature (10 C). Zone sedimentation analyses of cytoplasmic ribosomes isolated from the wild-type strain and from 14 of the mutant strains grown at 10 C indicate that one cold-sensitive mutant is defective in ribosome biosynthesis at that temperature: instead of the 2.3:1 mass ratio of 60S:37S ribosomal subunits characteristic of wild type, the mutant strain PJ30201 (called crib-1 for cytoplasmic ribosome biosynthesis) exhibits a mass ratio of approximately 7.2:1. Ribosomal subunits synthesized by strain PJ30201 at 25 C are present in wild-type proportions. The cold-sensitive and ribosomal phenotypes segregate together in tetrads isolated from crosses between strain PJ30201 and the wild type indicating that a single nuclear gene mutation is probably responsible for both mutant phenotypes. The crib-1 locus lies near the centromere in linkage group IV.  相似文献   

20.
Zinc is a multi-functional element that is found in almost 300 enzymes where it performs catalytic, co-catalytic, and/or structural functions. In 1982, Gordon et al. (Am J Clin Ntr 35:849–857, 1982) found that a low zinc diet caused poor platelet aggregation and increased bleeding tendency in adult males. This fact drew interest to the role of zinc in blood clotting. It has been shown that hyperzincemia predisposes to increased coagulability, and hypozincemia to poor platelet aggregation and increased bleeding time. The blood clotting disturbances can be regressed by appropriate zinc intake management. Considering the importance of zinc as an essential element, its participation in regulation of the equilibrium between pro- and anti-thrombotic factors originating in platelets and endothelium prompted further investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号