共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe here the functional implications of an increase in IgG binding to the neonatal Fc receptor. We have defined in a systematic fashion the relationship between enhanced FcRn binding of a humanized anti-respiratory syncytial virus (RSV) monoclonal antibody (MEDI-524) and the corresponding biological consequences in cynomolgus monkeys. The triple mutation M252Y/S254T/T256E (YTE) was introduced into the Fc portion of MEDI-524. Whereas these substitutions did not affect the ability of MEDI-524 to bind to its cognate antigen and inhibit RSV replication, they resulted in a 10-fold increase in its binding to both cynomolgus monkey and human FcRn at pH 6.0. MEDI-524-YTE was efficiently released from FcRn at pH 7.4 in both cases. We show that MEDI-524-YTE consistently exhibited a nearly 4-fold increase in serum half-life in cynomolgus monkeys when compared with MEDI-524. This constituted the largest half-life improvement described to date for an IgG in a primate. For the first time, we demonstrate that these sustained serum levels resulted in an up to 4-fold increase in lung bioavailability. Importantly, we also establish that our non-human primate model is relevant to human. Finally, we report that the YTE triple substitution provided a means to modulate the antibody-dependent cell-mediated cytotoxicity (ADCC) activity of a humanized IgG1 directed against the human integrin alpha(v)beta3. Therefore, the YTE substitutions allow the simultaneous modulation of serum half-life, tissue distribution and activity of a given human IgG1. 相似文献
2.
《MABS-AUSTIN》2013,5(2):502-508
The neonatal Fc receptor (FcRn) plays a pivotal role in IgG homeostasis, i.e., it salvages IgG antibodies from lysosomal degradation following fluid-phase pinocytosis, thus preventing rapid systemic elimination of IgG. Recombinant therapeutic antibodies are typically composed of human or humanized sequences, and their biodistribution, or tissue distribution, is often studied in murine models, although, the effect of FcRn on tissue distribution of human IgG in rodents has not been investigated. In this report, an 125I-labeled human IgG1 antibody was studied in both wild type C57BL/6 (WT) and FcRn knockout (KO) mice. Total radioactivity in both plasma and tissues (0–96hr post-dose) was measured by gamma-counting. Plasma exposure of human IgG1 were significantly lower in FcRn KO mice, which is consistent with the primary function of FcRn. Differences in biodistribution of human IgG to selected tissues were also observed. Among the tissue examined, the fat, skin and muscle showed a decrease in tissue-to-blood (T/B) exposure ratio of human IgG1 in FcRn KO mice comparing to the WT mice, while the liver, spleen, kidney, and lung showed an increase in the T/B exposure ratio in FcRn KO mice. A time-dependent change in the T/B ratios of human IgG1 was also observed for many tissues in FcRn KO mice. These results suggest that, in addition to its role in IgG elimination, FcRn may also play a role in antibody biodistribution. 相似文献
3.
Nancy Chen Weirong Wang Scott Fauty Yulin Fang Lora Hamuro Azher Hussain Thomayant Prueksaritanont 《MABS-AUSTIN》2014,6(2):502-508
The neonatal Fc receptor (FcRn) plays a pivotal role in IgG homeostasis, i.e., it salvages IgG antibodies from lysosomal degradation following fluid-phase pinocytosis, thus preventing rapid systemic elimination of IgG. Recombinant therapeutic antibodies are typically composed of human or humanized sequences, and their biodistribution, or tissue distribution, is often studied in murine models, although, the effect of FcRn on tissue distribution of human IgG in rodents has not been investigated. In this report, an 125I-labeled human IgG1 antibody was studied in both wild type C57BL/6 (WT) and FcRn knockout (KO) mice. Total radioactivity in both plasma and tissues (0–96hr post-dose) was measured by gamma-counting. Plasma exposure of human IgG1 were significantly lower in FcRn KO mice, which is consistent with the primary function of FcRn. Differences in biodistribution of human IgG to selected tissues were also observed. Among the tissue examined, the fat, skin and muscle showed a decrease in tissue-to-blood (T/B) exposure ratio of human IgG1 in FcRn KO mice comparing to the WT mice, while the liver, spleen, kidney, and lung showed an increase in the T/B exposure ratio in FcRn KO mice. A time-dependent change in the T/B ratios of human IgG1 was also observed for many tissues in FcRn KO mice. These results suggest that, in addition to its role in IgG elimination, FcRn may also play a role in antibody biodistribution. 相似文献
4.
Ingrid J. G. Burvenich William Farrugia Fook T. Lee Bruno Catimel Zhanqi Liu Dahna Makris 《MABS-AUSTIN》2016,8(4):775-786
IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs. More recent studies have shown that IgGs bind differently to mouse and human FcRn. In this study we characterize a set of hu3S193 IgG1 variants with mutations in the FcRn binding site. A double mutation in the binding site is necessary to abrogate binding to murine FcRn, whereas a single mutation in the FcRn binding site is sufficient to no longer detect binding to human FcRn and create hu3S193 IgG1 variants with a half-life similar to previously studied hu3S193 F(ab')2 (t1/2β, I253A, 12.23 h; H310A, 12.94; H435A, 12.57; F(ab')2, 12.6 h). Alanine substitutions in S254 in the CH2 domain and Y436 in the CH3 domain showed reduced binding in vitro to human FcRn and reduced elimination half-lives in huFcRn transgenic mice (t1/2β, S254A, 37.43 h; Y436A, 39.53 h; wild-type, 83.15 h). These variants had minimal effect on half-life in BALB/c nu/nu mice (t1/2β, S254A, 119.9 h; Y436A, 162.1 h; wild-type, 163.1 h). These results provide insight into the interaction of human Fc by human FcRn, and are important for antibody-based therapeutics with optimal pharmacokinetics for payload strategies used in the clinic. 相似文献
5.
6.
D W Sears N Osman B Tate I F McKenzie P M Hogarth 《Journal of immunology (Baltimore, Md. : 1950)》1990,144(1):371-378
Full length cDNA clones encoding the mouse Fc gamma RI were isolated by using redundant oligonucleotide probes based on previously determined amino acid sequence of protein bound to an IgG2a antibody column. Sequence analysis of cDNA clones indicates that mouse Fc gamma RI is a transmembrane glycoprotein that is composed of three disulfide bonded extracellular Ig binding domains unlike Fc gamma RII of man and mouse. These extracellular domains contain five potential sites of N-linked glycosylation; three sites in the first domain and one in each of the second and third domains. In addition a transmembrane region is present followed by a cytoplasmic tail of 84 amino acids. Analysis of the amino acid sequence of the first two extracellular domains of Fc gamma RI indicate that these are highly homologous to the extracellular domains of Fc gamma RII; the third domain is different and shows a lower level of homology to other FcR domains but is clearly related to the Ig super-family. Transfected cells expressing Fc gamma RI were shown to bind immune complexes of rabbit IgG; and monomeric IgG2a bound to transiently transfected cells with an affinity of approximately 5 x 10(7) M-1, i.e. the receptor was of high affinity and therefore was by definition Fc gamma RI. Northern analysis demonstrated that Fc gamma RI mRNA could be detected in the Fc gamma RI+ myeloid cell lines WEH1 3B and J774. Finally, Southern analysis indicated that Fc gamma RI is likely to be encoded by a single copy gene of approximately 9 kb. 相似文献
7.
Polymorphonuclear leukocyte function triggered through the high affinity Fc receptor for monomeric IgG 总被引:13,自引:0,他引:13
While it is extensively documented that gamma-interferon (IFN-gamma) is a potent stimulator of cells of the monocyte lineage, relatively little is known about its effects on granulocytes. We and others have found that immunoglobulin G (IgG) antibody-dependent cell cytotoxicity (ADCC) by polymorphonuclear cells (PMN) is significantly enhanced in a dose-dependent fashion by 16 hours incubation with recombinant IFN-gamma, resulting in 2- to 16-fold increases in ADCC. Incubation of PMN with lipopolysaccharide for 16 hours did not augment ADCC. Since IFN-gamma enhancement of ADCC is accompanied by increased expression of Fc receptors, we used monoclonal antibodies to compare control and IFN-gamma treated PMN for expression of the high affinity Fc receptor for monomeric IgG1 (FcgRI) and the PMN receptor for polymeric IgG (FcgR1o). Freshly isolated PMN or PMN cultured without IFN-gamma expressed FcgR1o but not detectable quantities of FcgRI. However, while FcgR1o were not increased on IFN-gamma-treated PMN, these cells expressed moderate amounts of FcgRI. To determine whether FcgRI contributed to PMN function, heteroantibodies consisting of Fab 3G8 or Fab 32 linked to Fab anti-target antibody were produced. ADCC of untreated PMN was promoted only by Fab 3G8 heteroantibody, whereas IFN-gamma-treated PMN killed through both FAB 3G8 and Fab 32 heteroantibodies. Thus, FcgRI can be induced on PMN by IFN-gamma, can mediate cytotoxicity by these cells, and probably accounts for the IFN-gamma stimulation of ADCC. 相似文献
8.
《MABS-AUSTIN》2013,5(4):928-942
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies. In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI). Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities. Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. 相似文献
9.
Tobias Neuber Katrin Frese Jan Jaehrling Sebastian J?ger Daniela Daubert Karin Felderer Mechthild Linnemann Anne H?hne Stefan Kaden Johanna K?lln Thomas Tiller Bodo Brocks Ralf Ostendorp Stefan Pabst 《MABS-AUSTIN》2014,6(4):928-942
The neonatal Fc receptor (FcRn) protects immunoglobulin G (IgG) from degradation and increases the serum half-life of IgG, thereby contributing to a higher concentration of IgG in the serum. Because altered FcRn binding may result in a reduced or prolonged half-life of IgG molecules, it is advisable to characterize Fc receptor binding of therapeutic antibody lead candidates prior to the start of pre-clinical and clinical studies.
In this study, we characterized the interactions between FcRn of different species (human, cynomolgus monkey, mouse and rat) and nine IgG molecules from different species and isotypes with common variable heavy (VH) and variable light chain (VL) domains. Binding was analyzed at acidic and neutral pH using surface plasmon resonance (SPR) and biolayer interferometry (BLI).
Furthermore, we transferred the well-accepted, but low throughput SPR-based method for FcRn binding characterization to the BLI-based Octet platform to enable a higher sample throughput allowing the characterization of FcRn binding already during early drug discovery phase. We showed that the BLI-based approach is fit-for-purpose and capable of discriminating between IgG molecules with significant differences in FcRn binding affinities.
Using this high-throughput approach we investigated FcRn binding of 36 IgG molecules that represented all VH/VL region combinations available in the fully human, recombinant antibody library Ylanthia®. Our results clearly showed normal FcRn binding profiles for all samples. Hence, the variations among the framework parts, complementarity-determining region (CDR) 1 and CDR2 of the fragment antigen binding (Fab) domain did not significantly change FcRn binding. 相似文献
10.
《MABS-AUSTIN》2013,5(2):331-343
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG's variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG's serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates. 相似文献
11.
Yasmina Noubia Abdiche Yik Andy Yeung Javier Chaparro-Riggers Ishita Barman Pavel Strop Sherman Michael Chin Amber Pham Gary Bolton Dan McDonough Kevin Lindquist Jaume Pons Arvind Rajpal 《MABS-AUSTIN》2015,7(2):331-343
The neonatal Fc receptor (FcRn) is expressed by cells of epithelial, endothelial and myeloid lineages and performs multiple roles in adaptive immunity. Characterizing the FcRn/IgG interaction is fundamental to designing therapeutic antibodies because IgGs with moderately increased binding affinities for FcRn exhibit superior serum half-lives and efficacy. It has been hypothesized that 2 FcRn molecules bind an IgG homodimer with disparate affinities, yet their affinity constants are inconsistent across the literature. Using surface plasmon resonance biosensor assays that eliminated confounding experimental artifacts, we present data supporting an alternate hypothesis: 2 FcRn molecules saturate an IgG homodimer with identical affinities at independent sites, consistent with the symmetrical arrangement of the FcRn/Fc complex observed in the crystal structure published by Burmeister et al. in 1994. We find that human FcRn binds human IgG1 with an equilibrium dissociation constant (KD) of 760 ± 60 nM (N = 14) at 25°C and pH 5.8, and shows less than 25% variation across the other human subtypes. Human IgG1 binds cynomolgus monkey FcRn with a 2-fold higher affinity than human FcRn, and binds both mouse and rat FcRn with a 10-fold higher affinity than human FcRn. FcRn/IgG interactions from multiple species show less than a 2-fold weaker affinity at 37°C than at 25°C and appear independent of an IgG''s variable region. Our in vivo data in mouse and rat models demonstrate that both affinity and avidity influence an IgG''s serum half-life, which should be considered when choosing animals, especially transgenic systems, as surrogates. 相似文献
12.
Chimeric Fc receptors identify functional domains of the murine high affinity receptor for IgG. 总被引:4,自引:0,他引:4
M D Hulett N Osman I F McKenzie P M Hogarth 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(6):1863-1868
Chimeric Fc gamma R have been generated between the mouse high affinity receptor for IgG (Fc gamma RI) and the low affinity receptor for IgG (Fc gamma RII) by exchanging the first two domains of the three-domain extracellular structure of Fc gamma RI with the homologous two-domain extracellular structure of Fc gamma RII. Studies of the affinity and specificity of binding of mouse Ig classes to these receptors defined functional regions of Fc gamma RI and showed some surprising results. After removal of the third extracellular domain of Fc gamma RI, the remaining two domains (domains 1 and 2) retained the capacity to bind Ig in the form of immune complexes, however, they bound monomeric IgG2a with a reduced affinity. Surprisingly, these two domains in the absence of the third domain bound not only IgG2a but also IgG1 and IgG2b, i.e., the third domain of Fc gamma RI suppresses the intrinsic capacity of the first two domains to act as a low affinity Fc gamma RII-like molecule. Linking the third extracellular domain of Fc gamma RI to the two extracellular domains of Fc gamma RII resulted in a receptor that retained the specificity and affinity of Fc gamma RII. Thus, the removal of domain 3 from Fc gamma RI resulted in the conversion of Fc gamma RI to an "Fc gamma RII-like" receptor. These findings indicate that domains 1 and 2 of Fc gamma RI form an Ig-binding motif, and although domain 3 is not essential for Fc binding by Fc gamma RI, it plays a crucial role in determining the specific high affinity interaction of Fc gamma RI with IgG2a. 相似文献
13.
The erythroleukemic cell line K562 bears a 40-kDa Fc receptor (Fc gamma RII) serologically related to and with a similar molecular weight as the Fc gamma R present on a broad range of leukocytes. The human IgG subclass specificity of the Fc gamma R on K562 was investigated using IgG aggregates of defined size, obtained from purified human myeloma proteins. The monoclonal antibody IV.3, which reacts with the Fc gamma RII present on various cell types, totally prevented binding of 125I-IgG2 trimers to K562. Experiments with radiolabeled IgG2 trimers showed that K562 cells bound a mean of 156,764 +/- 9895 molecules per cell with an association constant (Ka) of 1.8 +/- 0.7 X 10(8) M-1. Similar results were obtained with IgG3 oligomers. IgG3 and IgG2 trimers were about two- to threefold more effective in inhibiting binding of 125I-IgG2 trimers to K562 than IgG1 and IgG4 trimers. These results were confirmed by inhibition experiments using IgG monomers. The subclass specificity of the Fc gamma RII on K562 (i.e., IgG2 = IgG3 greater than IgG1 = IgG4) is quite distinct from the one reported for the Fc gamma RI and III of human cells (i.e., IgG1 = IgG3 greater than IgG4 and IgG2). 相似文献
14.
C L Anderson D H Ryan R J Looney P C Leary 《Journal of immunology (Baltimore, Md. : 1950)》1987,138(7):2254-2256
The 40 kD monocyte Fc receptor for IgG is capable of binding murine IgG1 and of supporting an IgG1 anti-T3 T lymphocyte proliferative response among approximately 80% of Caucasian individuals (responders), whereas the 40 kD Fc receptor on monocytes of the remaining individuals (nonresponders) is incapable of interacting with murine IgG1. By using a monoclonal antibody (mab IV3) that reacts with the 40 kD receptor, we found that the monocyte 40 kD receptors from responder and nonresponder individuals cannot be distinguished by either electrophoretic mobility on SDS-polyacrylamide gels, or by the number of receptors per cell as determined by indirect immunofluorescence. However, isoelectric focussing of the purified radioiodinated 40 kD receptor revealed that the monocyte receptor from all of four nonresponder individuals evaluated has a single distinctive pattern of multiple, regularly spaced bands, whereas the pattern of the 40 kD monocyte receptor from 11 responder individuals is of two sorts. One (seen in four of 11 responders) consists of multiple, regularly spaced bands that are asynchronous with the nonresponder pattern, and the other (seen in seven of 11 responders) consists of multiple bands that correspond in mobility to all of the bands of both of the other two patterns. The incidence of these three patterns suggests that the 40 kD Fc receptor is encoded by a single structural gene with two alleles, both of which are expressed. 相似文献
15.
Tetsunori Seki 《Immunogenetics》1989,30(1):5-12
Two varieties of similar, but structurally distinct, cDNA clones for the human low-affinity receptors for the Fc portion of
immunoglobulin G (FcγRII) have been isolated. One type of clone was obtained from human B lymphocytes, and the other from
PHA-activated peripheral T cells and monocytes. Transfection of both prototype clones into Cos-7 cells and subsequent specific
staining with monoclonal antibodies of the CDw32 group confirmed the identification of the gene products. The nucleotide sequence
of the cDNA clone from B lymphocytes contains an open reading frame that encodes a protein of relative mass (M
r) 27000 with an extracellular domain of 179 amino acids containing three potential N-glycosylation sites, a 26 amino acid
transmembrane domain, and a 44 amino acid cytoplasmic domain. The clones from peripheral T cells and monocytes both encoded
a protein ofM
r 31000 with a 179 amino acid extracellular domain containing two potential N-glycosylation sites and a 26 amino acid transmembrane
domain. The two types of clones had similar sequences in their immunoglobulin-like extracellular and transmembrane domains,
but differed in their leader sequences and 3′-untranslated regions. The most notable difference between the clones was the
presence of a distinctive 76 amino acid cytoplasmic domain in those isolated from T cells and monocytes. 相似文献
16.
E A MacIntyre P J Roberts R Abdul-Gaffar K O'Flynn G R Pilkington F Farace J Morgan D C Linch 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(12):4333-4343
It is shown that a mAb specific for the human 40-kDa FcR (FcRII) leads to activation of human monocytic cells but that extensive cross-linking of the receptor is required. Calcium mobilization can be induced in immature monocytic cells (undifferentiated U937 cells) and peripheral blood monocytes with an intact IgG1 anti-FcRII antibody (CIKM5) but not by F(ab')2 fragments of this antibody. The intact antibody can bind in a tripartite manner by its two F(ab') sites and its Fc-binding site whereas the F(ab')2 fragments of this antibody can only bind in a divalent fashion. A rise in intracellular free calcium ion concentration occurs when F(ab')2 fragments are cross-linked with F(ab')2 anti-mouse Ig indicating that more extensive cross-linking of FcRII is required rather than an obligatory requirement for an Fc-FcRII interaction. Calcium mobilization in response to intact or cross-linked F(ab')2 fragments of CIKM5 is associated with superoxide production only in IFN-gamma-primed peripheral blood monocytes and IFN-gamma differentiated U937 cells indicating that the activation signal produced via FcRII is inadequate to fully stimulate non-"primed" cells. A second mAb reactive with FcRII (2E1) does not cause calcium mobilization in monocytes or U937 cells, and partially blocks the effects of CIKM5. 2E1 also blocks CIKM5 superoxide production in IFN-gamma-primed monocytes and differentiated U937 cells. This may be explained in part by the fact that 2E1 is an IgG2a antibody and can only participate in bipartite binding with FcRII. When 2E1 is cross-linked with F(ab')2 anti-mouse Ig there is a small calcium response. This does not cause superoxide generation in IFN-primed monocytes but does do so in IFN-gamma differentiated U937 cells. FcRII is also expressed on granulocytes and some B cells but the effects of cross-linking the receptor on these cells differ from those seen in monocytes. 相似文献
17.
S H?ning B M Jockusch G Kreimer D Veltel H Robenek W Engelhardt J Frey 《European journal of cell biology》1991,55(1):48-59
We have analyzed the mode of uptake of human beta FcRII molecules expressed in BHK cells (clone 2/14). When challenged with aggregated human IgG (ahIgG), these cells bind the ligand at 4 degrees C and endocytose the IgG: receptor complexes rapidly upon warming to 37 degrees C, as seen by fluorescence microscopy with antibodies directed against human IgG. Using 125I-labeled ahIgG, we found that 40% of the bound ligand was internalized within 15 min, and approximately 60% within 2 h. Surface replication and thin sectioning combined with immunogold labeling revealed that the ligand was taken up by coated vesicles and was transferred to the endosomal/lysosomal compartment. This was confirmed by confocal laser microscopy of cells double labeled for clathrin and ahIgG. After modulation of the coated vesicle pattern by hypertonic medium, ahIgG transport was impaired. These data show that a single isoform of human FcRII, expressed in an animal cell negative for Fc receptors, can use the coated vesicle based endocytic pathway of the host cell. Reincubation of cycloheximide-treated cells with a second batch of ligand showed that approximately 20% of the beta FcRII was recycled. This finding is in apparent contrast to the fate of the endogenous Fc receptors expressed on mouse macrophages. 相似文献
18.
We have recently described a population of self-Ag-specific murine CD8(+) T cells with a memory phenotype that use receptors of both the adaptive and innate immune systems in the detection of transformed and infected cells. In this study we show that upon activation with IL-2 with or without Ag, between 10 and 20% of the activated self-specific CD8(+) T cells express the low affinity FcR for IgG. By contrast, all IL-2-activated NK cells express high levels of this FcR. The FcR comprises the FcgammaRIIIalpha and FcRgamma subunits. However, the FcRgamma subunit also associates with the CD3 complex, and this association probably contributes to the low expression of FcR in activated cells. Although the FcR is expressed at a low level on activated self-specific CD8(+) T cells, it functions very efficiently as a cytolytic receptor in ADCC. FcR-dependent killing occurred in the absence of TCR stimulation, but could be augmented by concurrent stimulation of the TCR. In addition to mediating ADCC, engagement of the FcR on self-specific CD8(+) T cells results in the production of both IFN-gamma and TNF-alpha. This is the first report of an activating FcR on self-specific murine CD8(+)alphabeta TCR(+) T cells and establishes the importance of innate immune system receptors in the function of these self-specific CD8(+) T cells. 相似文献
19.
Uray K Medgyesi D Hilbert A Sármay G Gergely J Hudecz F 《Journal of molecular recognition : JMR》2004,17(2):95-105
The IgG binding Fcgamma receptors (FcgammaRs) play a key role in defence against pathogens by linking humoral and cell-mediated immune responses. Impaired expression and/or function of FcgammaR may result in the development of pathological autoimmunity. Considering the functions of FcgammaRs, they are potential target molecules for drug design to aim at developing novel anti-inflammatory and immunomodulatory therapies. Previous data mostly obtained by X-ray analysis of ligand-receptor complexes indicate the profound role of the CH2 domain in binding to various FcgammaRs. Our aim was to localize linear segments, which are able to bind and also to modulate the function of the low affinity FcgammaRs, like FcgammaRIIb and FcgammaRIIIa. To this end a set of overlapping octapeptides was prepared corresponding to the 231-298 sequence of IgG1 CH2 domain and tested for binding to human recombinant soluble FcgammaRIIb. Based on these results, a second group of peptides was synthesized and their binding properties to recombinant soluble FcgammaRIIb, as well as to FcgammaRs expressed on the cell surface, was investigated. Here we report that peptide representing the Arg(255)-Ser(267) sequence of IgG1 is implicated in the binding to FcgammaRIIb. In addition we found that peptides corresponding to the Arg(255)-Ser(267), Lys(288)-Ser(298) or Pro(230)-Val(240) when presented in a multimeric form conjugated to branched chain polypeptide in uniformly oriented copies induced the release of TNFalpha, a pro-inflammatory cytokine from MonoMac monocyte cell line. These findings indicate that these conjugated peptides are able to cluster the activating FcgammaRs, and mediate FcgammaR dependent function. Peptide Arg(255)-Ser(267) can also be considered as a lead for further functional studies. 相似文献
20.
Identification of a unique receptor on a group A streptococcus for the Fc region of human IgG3 总被引:3,自引:0,他引:3
Receptors that bind to the Fc region of all four human IgG subclasses have been described on a number of strains of group A streptococci. In this study, we have demonstrated that these immunoglobulin binding properties are mediated by two distinct Fc receptors. The first receptor, with a Mr of approximately 56,000, binds to human IgG1, IgG2, and IgG4, but not to IgG3. A second receptor, with a Mr of approximately 38,000, binds exclusively to human immunoglobulins of the IgG3 subclass. 相似文献