共查询到20条相似文献,搜索用时 15 毫秒
1.
Galangin, an active flavonoid present at high concentration in Alpinia officinarum Hance and propolis, shows cytotoxicity towards several cancer cell lines, including melanoma. However, the specific cellular targets of galangin-induced cytotoxicity in melanoma are still unknown. Here, we investigated the effects of galangin in B16F10 melanoma cells and explored the possible molecular mechanisms. Galangin significantly decreased cell viability of B16F10 cells, and also induced cell apoptosis shown by Hoechst 33342 staining and Annexin V-PI double staining flow cytometric assay. Furthermore, upon galangin treatment, disruption of mitochondrial membrane potential was observed by JC-1 staining. Western blotting analysis indicated that galangin activated apoptosis signaling cascades by cleavage of procaspase-9, procaspase-3 and PARP in B16F10 cells. Moreover, galangin significantly induced activation of phosphor-p38 MAPK in a time and dose dependent manner. SB203580, an inhibitor of p38, partially attenuated galangin-induced apoptosis in B16F10 cells. Taken together, this work suggests that galangin has the potential to be a promising agent for melanoma treatment and may be further evaluated as a chemotherapeutic agent. 相似文献
2.
Hepatitis B virus X protein activates the p38 mitogen-activated protein kinase pathway in dedifferentiated hepatocytes 总被引:12,自引:0,他引:12 下载免费PDF全文
Hepatitis B virus X protein (pX) is implicated in hepatocarcinogenesis by an unknown mechanism. Employing a cellular model linked to pX-mediated transformation, we investigated the role of the previously reported Stat3 activation by pX in hepatocyte transformation. Our model is composed of a differentiated hepatocyte (AML12) 3pX-1 cell line that undergoes pX-dependent transformation and a dedifferentiated hepatocyte (AML12) 4pX-1 cell line that does not exhibit transformation by pX. We report that pX-dependent Stat3 activation occurs only in non-pX-transforming 4pX-1 cells and conclude that Stat3 activation is not linked to pX-mediated transformation. Maximum Stat3 transactivation requires Ser727 phosphorylation, mediated by mitogenic pathway activation. Employing dominant negative mutants and inhibitors of mitogenic pathways, we demonstrate that maximum, pX-dependent Stat3 transactivation is inhibited by the p38 mitogen-activated protein kinase (MAPK)-specific inhibitor SB 203580. Using transient-transreporter and in vitro kinase assays, we demonstrate for the first time that pX activates the p38 MAPK pathway only in 4pX-1 cells. pX-mediated Stat3 and p38 MAPK activation is Ca(2+) and c-Src dependent, in agreement with the established cellular action of pX. Importantly, pX-dependent activation of p38 MAPK inactivates Cdc25C by phosphorylation of Ser216, thus initiating activation of the G(2)/M checkpoint, resulting in 4pX-1 cell growth retardation. Interestingly, pX expression in the less differentiated hepatocyte 4pX-1 cells activates signaling pathways known to be active in regenerating hepatocytes. These results suggest that pX expression in the infected liver effects distinct mitogenic pathway activation in less differentiated versus differentiated hepatocytes. 相似文献
3.
Angiotensin II (Ang II) is the main active peptide of the renin–angiotensin system (RAS), producing a number of inflammatory mediators that lead to endothelial dysfunction and the progression of atherosclerosis. Ang II-induced NF-κB nuclear translocation plays a pivotal role in this response. This study examines the NF-κB activation mechanism elicited by Ang II in human umbilical vein endothelial cells (HUVEC). Electrophoretic mobility shift assays and Western blotting revealed that Ang II, signaling via AT1, produces a time-dependent increase in NF-κB DNA binding and IκB degradation. These results also demonstrate that Ang II leads to MAPK phosphorylation and p38MAPK pathway-induced NF-κB activation. Furthermore, AT1 is required for p38MAPK phosphorylation induced by Ang II. This study provides evidence that Ang II elicits NF-κB activation via the p38MAPK pathway in HUVEC. 相似文献
4.
Fengyun Dong Fang Guo Liqun Li Ling Guo Yinglong Hou Enkui Hao Suhua Yan Thaddeus D. Allen Ju Liu 《Biochemical and biophysical research communications》2014
The vasculature of various organs is a targeted by the environmental toxin, cadmium (Cd). However, mechanisms leading to pathological conditions are poorly understood. In the present study, we examined the effect of cadmium chloride (CdCl2) on human umbilical vein endothelial cells (HUVECs). At 4 μM, CdCl2 induced a hyper-permeability defect in HUVECs, but not the inhibition of cell growth up to 24 h. This effect of CdCl2 was dependent on the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. The p38 MAPK inhibitor SB203850 suppressed the CdCl2-induced alteration in trans-endothelial electrical resistance in HUVEC monolayers, a model measurement of vascular endothelial barrier integrity. SB203850 also inhibited the Cd-induced membrane dissociation of vascular endothelial (VE) cadherin and β-catenin, the important components of the adherens junctional complex. In addition, SB203850 reduces the Cd-induced expression and secretion of tumor necrosis factor α (TNF-α). Taken together, our findings suggest that Cd induces vascular hyper-permeability and disruption of endothelial barrier integrity through stimulation of p38 MAPK signaling. 相似文献
5.
Phosphorylation of H2AX is believed to be associated with the repair of damaged DNA. Recent findings suggest a novel function of H2AX in cellular apoptosis. Specifically, it was shown that ultraviolet A-activated JNK phosphorylates H2AX to regulate apoptosis. Here we show that serum starvation induces H2AX phosphorylation and apoptosis independent of the JNK pathway. Serum starvation induced p38 phosphorylation, whereas it did not affect the phosphorylation of ERK or JNK. Inhibition of p38 reduced H2AX phosphorylation and apoptosis. Furthermore, p38 was found to phosphorylate H2AX directly in vitro and was colocalized with H2AX in vivo. Finally, we demonstrate that H2AX phosphorylation is required for serum starvation-induced apoptosis. Taken together, these data elucidate a novel signaling pathway (p38/H2AX) to regulate apoptosis. 相似文献
6.
7.
8.
Hepatitis B virus X protein enhances transcriptional activity of hypoxia-inducible factor-1alpha through activation of mitogen-activated protein kinase pathway 总被引:12,自引:0,他引:12
Yoo YG Oh SH Park ES Cho H Lee N Park H Kim DK Yu DY Seong JK Lee MO 《The Journal of biological chemistry》2003,278(40):39076-39084
9.
NGF withdrawal induces apoptosis in CESS B cell line through p38 MAPK activation and Bcl-2 phosphorylation 总被引:6,自引:0,他引:6
Rosini P De Chiara G Lucibello M Garaci E Cozzolino F Torcia M 《Biochemical and biophysical research communications》2000,278(3):753-759
The sIgG(+) lymphoblastoid B cell line CESS spontaneously produces a high amount of NGF and expresses both high affinity (p140(Trk-A)) and low affinity (p75(NTR)) NGF receptors. Blocking NGF signals with neutralizing antibodies or specific Trk-A inhibitors induces a rapid phosphorylation of antiapoptotic Bcl-2 protein, followed by caspase activation, and apoptotic death of CESS cells. Bcl-2 phosphorylation in several sites within a approximately 60 aa "loop" domain of protein is known to regulate its antiapoptotic function. Accordingly, CESS cells expressing the loop deletional mutant cDNA constructs Bcl-2 Delta40-91 were completely resistant to apoptosis induced by NGF withdrawal, indicating that Bcl-2 phosphorylation is a critical event. NGF withdrawal induces p38 MAPK, but not JNK, activation in CESS cells, and SB203580, a specific inhibitor of p38 MAPK, is able to prevent both Bcl-2 phosphorylation and apoptosis, indicating that p38 MAPK is the enzyme responsible for these events. 相似文献
10.
11.
Cheng AS Yu J Lai PB Chan HL Sung JJ 《Biochemical and biophysical research communications》2008,374(2):175-180
The oncogenic hepatitis B virus X protein (HBx) and cyclooxygenase (COX)-2 are highly co-expressed in chronic hepatitis, cirrhosis and well-differentiated hepatocellular carcinoma (HCC). Although HBx is shown to activate COX-2, the functional consequences of this interaction in hepatocarcinogenesis remain unknown. Using an engineered hepatoma cell system in which the expression of wild-type p53 can be chemically modulated, we show here that COX-2 mediates HBx actions in opposing p53. Enforced expression of HBx sequestrates p53 in the cytoplasm and significantly abolishes p53-induced apoptosis. The anti-apoptotic Mcl-1 protein is suppressed by p53 but reactivated by HBx. The abrogation of apoptosis is completely reversed by specific COX-2 inhibition, suggesting that HBx blocks p53-induced apoptosis via activation of COX-2/PGE2 pathway. We further show that COX-2 inhibition blocks HBx reactivation of Mcl-1, linking this protein to the anti-apoptotic function of COX-2. These results demonstrate that COX-2 is an important survival factor mediating the oncogenic actions of HBx. Over-expression of HBx and COX-2 may provide a selective clonal advantage for preneoplastic or neoplastic hepatocytes and contribute to the initiation and progression of HCC. 相似文献
12.
13.
M Malek P Guillaumot A-L Huber J Lebeau V P��trilli A Kfoury I Mikaelian T Renno S N Mani�� 《Cell death & disease》2012,3(4):e300
Lysosomal regulation is a poorly understood mechanism that is central to degradation and recycling processes. Here we report that LAMTOR1 (late endosomal/lysosomal adaptor, MAPK and mTOR activator 1) downregulation affects lysosomal activation, through mechanisms that are not solely due to mTORC1 inhibition. LAMTOR1 depletion strongly increases lysosomal structures that display a scattered intracellular positioning. Despite their altered positioning, those dispersed structures remain overall functional: (i) the trafficking and maturation of the lysosomal enzyme cathepsin B is not altered; (ii) the autophagic flux, ending up in the degradation of autophagic substrate inside lysosomes, is stimulated. Consequently, LAMTOR1-depleted cells face an aberrant lysosomal catabolism that produces excessive reactive oxygen species (ROS). ROS accumulation in turn triggers p53-dependent cell cycle arrest and apoptosis. Both mTORC1 activity and the stimulated autophagy are not necessary to this lysosomal cell death pathway. Thus, LAMTOR1 expression affects the tuning of lysosomal activation that can lead to p53-dependent apoptosis through excessive catabolism. 相似文献
14.
15.
Hsieh YH Su IJ Wang HC Tsai JH Huang YJ Chang WW Lai MD Lei HY Huang W 《Molecular cancer research : MCR》2007,5(10):1063-1072
The hepatitis B virus (HBV) large surface antigen (LHBS) mutant with deletion at the pre-S(2) region accumulates in endoplasmic reticulum (ER) and is associated with HBV-induced hepatocellular carcinogenesis. In this study, we found that the pre-S(2) LHBS mutant directly interacts with the Jun activation domain-binding protein 1 (JAB1). Association of pre-S(2) LHBS with JAB1 dissociated JAB1 from the JAB1/IRE1 complex in ER. The free (active) JAB1 then translocated into cell nuclei and rendered the Cdk inhibitor p27(Kip1) to cytosolic proteasome for degradation. The pre-S(2) LHBS mutant induced hyperphosphorylation of tumor suppressor retinoblastoma (RB) via cyclin-dependent kinase 2 (Cdk2), a downstream molecule regulated by p27(Kip1). This effect is independent of the ER stress signaling pathway. The transgenic mice carrying the pre-S(2) mutant LHBS gene also exhibited Cdk2 activation, p27(Kip1) degradation, as well as RB hyperphosphorylation. The mouse hepatocytes exhibited morphologic abnormalities such as chromatin condensation, multinucleation, and dysplasia of hepatocytes. In summary, the pre-S(2) LHBS mutant causes p27(Kip1) degradation through direct interaction with JAB1. The pre-S(2) mutant LHBS is suggested to be a potential oncoprotein for HBV-related hepatocellular carcinoma. 相似文献
16.
17.
Natural killer T (NKT) cells are unique T lymphocytes that recognize CD1d-bound lipid antigens and play an important role in both innate and acquired immune responses against infectious diseases and tumors. We have already shown that a vesicular stomatitis virus (VSV) infection results in the rapid inhibition of murine CD1d-mediated antigen presentation to NKT cells. In the present study, it was found that the VSV matrix (VSV-M) protein is an important element in this decrease in antigen presentation postinfection. The VSV-M protein altered the intracellular distribution of murine CD1d molecules, resulting in qualitative (but not quantitative) changes in cell surface CD1d expression. The M protein was distributed throughout the infected cell, and it was found to activate the mitogen-activated protein kinase (MAPK) p38 very early postinfection. Infection of CD1d+ cells with a temperature-sensitive VSV-M mutant at the nonpermissive temperature both substantially reversed the inhibition of antigen presentation by CD1d and delayed the activation of p38. Thus, the VSV-M protein plays an important role in permitting the virus to evade important components of the innate immune response by regulating specific MAPK pathways. 相似文献
18.
Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway 总被引:27,自引:0,他引:27
Shih WL Kuo ML Chuang SE Cheng AL Doong SL 《The Journal of biological chemistry》2000,275(33):25858-25864
Transforming growth factor-beta (TGF-beta) is a potent inducer of apoptosis in Hep 3B cells. This work investigated how hepatitis B virus X protein (HBx) affects TGF-beta-induced apoptosis. Trypan blue exclusion and colony formation assays revealed that HBx increased the ID(50) toward TGF-beta. In the presence of HBx, TGF-beta-induced DNA laddering was decreased, indicating that HBx had the ability to block TGF-beta-induced apoptosis. Furthermore, HBx did not alter the expression levels of type I and type II TGF-beta receptors. HBx did not affect TGF-beta-induced activation of promoter activities of the plasminogen activator inhibitor-1 (PAI-1) gene. These results indicate that HBx interferes with only a subset of TGF-beta activity. In the presence of phosphatidylinositol (PI) 3-kinase inhibitors, wortmannin or LY294002, the HBx-mediated inhibitory effect on TGF-beta-induced apoptosis was alleviated. In addition, the tyrosine phosphorylation levels of the regulatory subunit p85 of phosphatidylinositol 3-kinase (PI 3-kinase) and PI 3-kinase activity were elevated in stable clones with HBx expression. Transactivation-deficient mutants of HBx lost their ability to inhibit TGF-beta-induced apoptosis. Phosphorylation of the p85 subunit of PI 3-kinase and Akt, a downstream target of PI 3-kinase, was not observed in stable clones with transactivation-deficient HBx mutant's expression. Thus, the anti-apoptotic effect of HBx against TGF-beta can be mediated through the activation of the PI 3-kinase signaling pathway, and the transactivation function of HBx is required for its anti-apoptosis activity. 相似文献
19.
Hepatitis B virus X protein (HBx) is essential for viral replication and plays an important role in viral pathogenesis. HBx transactivates many viral and cellular genes and participates in cellular signal transduction pathways, proliferation, and apoptosis. In the present study, we report that HBx induces apoptosis by enhancing the translocation of Bax to mitochondria, followed by inducing the loss of mitochondrial membrane potential and release of cytochrome C. In addition, Bcl-2, inhibitor of Bax, rescues the disruption of mitochondrial membrane potential and DNA fragmentation induced by serum starvation in HepG2-X cells expressing HBx. We also found that HBx binds directly to Bax and interferes with the interaction between Bax and 14-3-3epsilon to enhance the translocation of Bax to mitochondria. Taken together, our data suggest that HBx induces apoptosis by interacting with Bax and enhancing its translocation to mitochondria. 相似文献