首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prevailing directions of seed and pollen dispersal may induce anisotropy of the fine‐scale spatial genetic structure (FSGS), particularly in wind‐dispersed and wind‐pollinated species. To examine the separate effects of directional seed and pollen dispersal on FSGS, we conducted a population genetics study for a dioecious, wind‐pollinated, and wind‐dispersed tree species, Cercidiphyllum japonicum Sieb. et Zucc, based on genotypes at five microsatellite loci of 281 adults of a population distributed over a ca. 80 ha along a stream and 755 current‐year seedlings. A neighborhood model approach with exponential‐power‐von Mises functions indicated shorter seed dispersal (mean = 69.1 m) and much longer pollen dispersal (mean = 870.6 m), effects of dispersal directions on the frequencies of seed and pollen dispersal, and the directions with most frequent seed and pollen dispersal (prevailing directions). Furthermore, the distance of effective seed dispersal within the population was estimated to depend on the dispersal direction and be longest at the direction near the prevailing direction. Therefore, patterns of seed and pollen dispersal may be affected by effective wind directions during the period of respective dispersals. Isotropic FSGS and spatial sibling structure analyses indicated a significant FSGS among the seedlings generated by the limited seed dispersal, but anisotropic analysis for the seedlings indicated that the strength of the FSGS varied with directions between individuals and was weakest at a direction near the directions of the most frequent and longest seed dispersal but far from the prevailing direction of pollen dispersal. These results suggest that frequent and long‐distance seed dispersal around the prevailing direction weakens the FSGS around the prevailing direction. Therefore, spatially limited but directional seed dispersal would determine the existence and direction of FSGS among the seedlings.  相似文献   

2.
Over the past century, the Brazilian Atlantic forest has been reduced to small, isolated fragments of forest. Reproductive isolation theories predict a loss of genetic diversity and increases in inbreeding and spatial genetic structure (SGS) in such populations. We analysed eight microsatellite loci to investigate the pollen and seed dispersal patterns, genetic diversity, inbreeding and SGS of the tropical tree Copaifera langsdorffii in a small (4.8 ha), isolated population. All 112 adult trees and 128 seedlings found in the stand were sampled, mapped and genotyped. Seedlings had significantly lower levels of genetic diversity (A=16.5±0.45, mean±95% s.e.; He=0.838±0.006) than did adult trees (A=23.2±0.81; He=0.893±0.030). Parentage analysis did not indicate any seed immigration (mseeds=0) and the pollen immigration rate was very low (mpollen=0.047). The average distance of realized pollen dispersal within the stand was 94 m, with 81% of the pollen travelling <150 m. A significant negative correlation was found between the frequency and distance of pollen dispersal (r=−0.79, P<0.01), indicating that short-distance pollinations were more frequent. A significant SGS for both adults (∼50 m) and seedlings (∼20 m) was also found, indicating that most of the seeds were dispersed over short distances. The results suggested that the spatial isolation of populations by habitat fragmentation can restrict seed and pollen gene flow, increase SGS and affect the genetic diversity of future generations.  相似文献   

3.
Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold‐intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 years before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question, we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre‐Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723 km). Some of the most compelling evidence for human‐mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695 km) than wild populations sharing rare alleles (mean = 607 km; p = .014). Collectively, the genetic data suggest that long‐distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples.  相似文献   

4.
For range‐restricted species with disjunct populations, it is critical to characterize population genetic structure, gene flow, and factors that influence functional connectivity among populations in order to design effective conservation programs. In this study, we genotyped 314 individuals from 16 extant populations of Ivesia webberi, a United States federally threatened Great Basin Desert using six microsatellite loci. We assessed the effects of Euclidean distance, landscape features, and ecological dissimilarity on the pairwise genetic distance of the sampled populations, while also testing for a potential relationship between Iwebberi genetic diversity and diversity in the vegetative communities. The results show low levels of genetic diversity overall (H e = 0.200–0.441; H o = 0.192–0.605) and high genetic differentiation among populations. Genetic diversity was structured along a geographic gradient, congruent with patterns of isolation by distance. Populations near the species’ range core have relatively high genetic diversity, supporting in part a central‐marginal pattern, while also showing some evidence for a metapopulation dynamic. Peripheral populations have lower genetic diversity, significantly higher genetic distances, and higher relatedness. Genotype cluster admixture results suggest a complex dispersal pattern among populations with dispersal direction and distance varying on the landscape. Pairwise genetic distance strongly correlates with elevation, actual evapotranspiration, and summer seasonal precipitation, indicating a role for isolation by environment, which the observed phenological mismatches among the populations also support. The significant correlation between pairwise genetic distance and floristic dissimilarity in the germinated soil seed bank suggests that annual regeneration in the plant communities contribute to the maintenance of genetic diversity in Iwebberi.  相似文献   

5.
Dispersal plays a vital role in the geographical distribution, population genetic structure, quantity dynamics, and evolution of a species. Sex‐biased dispersal is common among vertebrates and many studies have documented a tendency toward male‐biased dispersal in mammals and female‐biased dispersal in birds. However, dispersal patterns in reptiles remain poorly understood. In this study, we explored the genetic diversity and dispersal patterns of the widely distributed Asian pitviper Protobothrops mucrosquamatus. In total, 16 polymorphic microsatellite loci were screened in 150 snakes (48 males, 44 females, 58 samples without sex information) covering most of their distribution. Microsatellite analysis revealed high genetic diversity in Pmucrosquamatus. Bayesian clustering of population assignment identified two major clusters for all populations, somewhat inconsistent with the mitochondrial DNA phylogeny of Pmucrosquamatus reported in previous research. Analyses based on 92 sex‐determined and 37 samples of Pmucrosquamatus from three small sites in Sichuan, China (Mingshan, Yibin, and Zizhong) consistently suggested female‐biased dispersal in Pmucrosquamatus, which is the first example of this pattern in snakes. The female‐biased dispersal patterns in Pmucrosquamatus may be explained by local resource competition.  相似文献   

6.
Population connectivity resulting from larval dispersal is essential for the maintenance or recovery of populations in marine ecosystems, including coral reefs. Studies of species diversity and genetic connectivity within species are essential for the conservation of corals and coral reef ecosystems. We analyzed mitochondrial DNA sequence types and microsatellite genotypes of the broadcast‐spawning coral, Galaxea fascicularis, from four regions in the subtropical Nansei Islands in the northwestern Pacific Ocean. Two types (soft and hard types) of nematocyst morphology are known in G. fascicularis and are significantly correlated with the length of a mitochondrial DNA noncoding sequence (soft type: mt‐L; hard type: mt‐S type). Using microsatellites, significant genetic differentiation was detected between the mitochondrial DNA sequence types in all regions. We also found a third genetic cluster (mt‐L+), and this unexpected type may be a cryptic species of Galaxea. High clonal diversity was detected in both mt‐L and mt‐S types. Significant genetic differentiation, which was found among regions within a given type (F ST = 0.009–0.024, all Ps ≤ 0.005 in mt‐L; 0.009–0.032, all Ps ≤ 0.01 in mt‐S), may result from the shorter larval development than in other broadcast‐spawning corals, such as the genus Acropora. Nevertheless, intraspecific genetic diversity and connectivity have been maintained, and with both sexual and asexual reproduction, this species appears to have a potential for the recovery of populations after disturbance.  相似文献   

7.
Climate warming alters plant composition and population dynamics of arctic ecosystems. In particular, an increase in relative abundance and cover of deciduous shrub species (shrubification) has been recorded. We inferred genetic variation of common shrub species (Alnus alnobetula, Betula nana, Salix sp.) through time. Chloroplast genomes were assembled from modern plants (n = 15) from the Siberian forest‐tundra ecotone. Sedimentary ancient DNA (sedaDNA; n = 4) was retrieved from a lake on the southern Taymyr Peninsula and analyzed by metagenomics shotgun sequencing and a hybridization capture approach. For A. alnobetula, analyses of modern DNA showed low intraspecies genetic variability and a clear geographical structure in haplotype distribution. In contrast, B. nana showed high intraspecies genetic diversity and weak geographical structure. Analyses of sedaDNA revealed a decreasing relative abundance of Alnus since 5,400 cal yr BP, whereas Betula and Salix increased. A comparison between genetic variations identified in modern DNA and sedaDNA showed that Alnus variants were maintained over the last 6,700 years in the Taymyr region. In accordance with modern individuals, the variants retrieved from Betula and Salix sedaDNA showed higher genetic diversity. The success of the hybridization capture in retrieving diverged sequences demonstrates the high potential for future studies of plant biodiversity as well as specific genetic variation on ancient DNA from lake sediments. Overall, our results suggest that shrubification has species‐specific trajectories. The low genetic diversity in Aalnobetula suggests a local population recruitment and growth response of the already present communities, whereas the higher genetic variability and lack of geographical structure in B. nana may indicate a recruitment from different populations due to more efficient seed dispersal, increasing the genetic connectivity over long distances.  相似文献   

8.
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular‐based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non‐native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream–downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full‐sib families and to investigate the genetic structure of Tpolycolpus among both hosts and sampling sites. The distribution of full‐sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that Tpolycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream‐to‐downstream dispersal events of Tpolycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation‐by‐distance observed at the river scale. We also detected some downstream‐to‐upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2–23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free‐living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.  相似文献   

9.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

10.
Various factors affect spatial genetic structure in plant populations, including adult density and primary and secondary seed dispersal mechanisms. We evaluated pollen and seed dispersal distances and spatial genetic structure of Carapa guianensis Aublet. (Meliaceae) in occasionally inundated and terra firme forest environments that differed in tree densities and secondary seed dispersal agents. We used parentage analysis to obtain contemporary gene flow estimates and assessed the spatial genetic structure of adults and juveniles. Despite the higher density of adults (diameter at breast height ≥ 25 cm) and spatial aggregation in occasionally inundated forest, the average pollen dispersal distance was similar in both types of forest (195 ± 106 m in terra firme and 175 ± 87 m in occasionally inundated plots). Higher seed flow rates (36.7% of juveniles were from outside the plot) and distances (155 ± 84 m) were found in terra firme compared to the occasionally inundated plot (25.4% and 114 ± 69 m). There was a weak spatial genetic structure in juveniles and in terra firme adults. These results indicate that inundation may not have had a significant role in seed dispersal in the occasionally inundated plot, probably because of the higher levels of seedling mortality.  相似文献   

11.
Many Northeast (NE) Pacific fishes and invertebrates survived Pleistocene glaciations in northern refugia, but the extent that kelps survived in northern areas is uncertain. Here, we test the hypothesis that populations of sugar kelp (Saccharina latissima) persisted in the Gulf of Alaska during ice‐age maxima when the western margin of the Cordilleran ice sheet covered coastal areas around the NE Pacific Ocean. We estimated genetic diversities within and phylogeographical relationships among 14 populations along 2,800 km in the NE Pacific and Bering Sea with partial sequences of mitochondrial DNA 5′‐cytochrome oxidase subunit I (COI, bp = 624, n = 543), chloroplast DNA ribulose‐1,5‐bisphosphate carboxylase large subunit‐3′ (rbcL, bp = 735, n = 514), and 11 microsatellite loci. Concatenated sequences of rbcL and COI showed moderate levels of within‐population genetic diversity (mean h = 0.200) but substantial differences among populations (ΦST = 0.834, p < .0001). Microsatellites showed moderate levels of heterozygosity within populations (mean H E = 0.391). Kelps in the same organellar lineage tended to cluster together, regardless of geographic origins, as indicated in a principal coordinate analysis (PCoA) of microsatellite genotypes. The PCoA also showed evidence of nuclear hybridizations between co‐occurring organellar lineages. Individual admixture plots with population clusters of K = 2, 6, and 9 showed increasing complexity with considerable historical admixture between some clusters. A time‐calibrated phylogeny placed divergences between rbcL‐COI lineages at 1.4 million years at most. The time frames of mutation in the rbcL‐COI lineages and microsatellite population clusters differed among locations. The existence of ancient lineages in the Gulf of Alaska, moderate levels of genetic diversity, and the absence of departures from neutrality are consistent with northern refugia during multiple Croll‐Milankovitch climate cycles in the Pleistocene Epoch.  相似文献   

12.
Phylogeographic research concerning Central China has been rarely conducted. Population genetic and phylogeography of Ziziphus jujuba var. spinosa (also called sour jujube) were investigated to improve our understanding of plant phylogeographic patterns in Central China. Single‐copy nuclear gene markers and complete chloroplast genome data were applied to 328 individuals collected from 21 natural populations of sour jujube in China. Nucleotide variation of sour jujube was relatively high (π = 0.00720, θ w = 0.00925), which resulted from the mating system and complex population dynamics. Analysis of molecular variation analysis revealed that most of the total variation was attributed to variation within populations, and a high level of genetic differentiation among populations was detected (F st = 0.197). Relatively low long‐distance dispersal capability and vitality of pollen contributed to high genetic differentiation among populations. Differences in the environmental conditions and long distance among populations further restricted gene flow. Structure clustering analysis uncovered intraspecific divergence between central and marginal populations. Migrate analysis found a high level of gene flow between these two intraspecific groups. Bayesian skyline plot detected population expansion of these two intraspecific groups. Network and phylogeny analysis of chloroplast haplotypes also found intraspecific divergence, and the divergence time was estimated to occur at about 55.86 Ma. Haplotype native to the Loess Plateau was more ancient, and multiple glacial refugia of sour jujube were found to locate at the Loess Plateau, areas adjacent to the Qinling Mountains and Tianmu Mountains. Species distribution model analysis found a typical contraction‐expansion model corresponding to the Quaternary climatic oscillations. In the future, the distribution of sour jujube may shift to high‐latitude areas. This study provides new insights for phylogeographic research of temperate plant species distributed in Central China and sets a solid foundation for the application of the scientific management strategy of Z. jujuba var. spinosa.  相似文献   

13.
Disease transmission can be strongly influenced by the manner in which conspecifics are connected across a landscape and the effects of land use upon these dynamics. In northern Botswana, the territorial and group‐living banded mongoose (Mungos mungo) lives across urban and natural landscapes and is infected with a novel Mycobacterium tuberculosis complex pathogen, M. mungi. Using microsatellite markers amplified from DNA derived from banded mongoose fecal and tissue samples (n = 168), we evaluated population genetic structure, individual dispersal, and gene flow for 12 troops. Genetic structure was detectable and moderately strong across groups (F ST = 0.086), with K = 7 being the best‐supported number of genetic clusters. Indications of admixture in certain troops suggest formation of new groups through recent fusion events. Differentiation was higher for troops inhabiting natural areas (F ST = 0.102) than for troops in urban landscapes (F ST = 0.081). While this suggests increased levels of gene flow between urban‐dwelling troops, the inclusion of a smaller number of study troops from natural land types may have influenced these findings. Of those individuals confirmed infected with M. mungi, the majority (73%, n = 11) were assigned to their natal group which is consistent with previous observations linking lower levels of dispersal with infection. Twenty‐one probable dispersing individuals were identified, with all suspected migrants originating from troops within the urban landscape. Findings suggest that urbanized landscapes may increase gene flow and dispersal behavior with a concomitant increase in the risk of pathogen spread. As urban landscapes expand, there is an increasing need to understand how land use and pathogen infection may change wildlife behavior and disease transmission potential.  相似文献   

14.
Population densities of the gray‐sided vole Myodes rufocanus fluctuate greatly within and across years in Japan. Here, to investigate the role of individual dispersal in maintaining population genetic diversity, we examined how genetic diversity varied during fluctuations in density by analyzing eight microsatellite loci in voles sampled three times per year for 5 years, using two fixed trapping grids (approximately 0.5 ha each). At each trapping session, all captured voles at each trapping grid were removed. The STRUCTURE program was used to analyze serially collected samples to examine how population crashes were related to temporal variability, based on local‐scale genetic compositions in each population. In total, 461 and 527 voles were captured at each trapping grid during this study. The number of voles captured during each trapping session (i.e., vole density) varied considerably at both grids. Although patterns in fluctuations were not synchronized between grids, the peak densities were similar. At both grids, the mean allele number recorded at each trapping session was strongly, positively, and nonlinearly correlated with density. STRUCTURE analyses revealed that the proportions of cluster compositions among individuals at each grid differed markedly before and after the crash phase, implying the long‐distance dispersal of voles from remote areas at periods of low density. The present results suggest that, in gray‐sided vole populations, genetic diversity varies with density largely at the local scale; in contrast, genetic variation in a metapopulation is well‐preserved at the regional scale due to the density‐dependent dispersal behaviors of individuals. By influencing the dispersal patterns of individuals, fluctuations in density affect metapopulation structure spatially and temporally, while the levels of genetic diversity are preserved in a metapopulation.  相似文献   

15.
Analysing pollen movement is a key to understanding the reproductive system of plant species and how it is influenced by the spatial distribution of potential mating partners in fragmented populations. Here we infer parameters related to levels of pollen movement and diversity of the effective pollen cloud for the wind-pollinated shrub Pistacia lentiscus across a highly disturbed landscape using microsatellite loci. Paternity analysis and the indirect KinDist and Mixed Effect Mating models were used to assess mating patterns, the pollen dispersal kernel, the effective number of males (Nep) and their relative individual fertility, as well as the existence of fine-scale spatial genetic structure in adult plants. All methods showed extensive pollen movement, with high rates of pollen flow from outside the study site (up to 73–93%), fat-tailed dispersal kernels and large average pollination distances (δ = 229–412 m). However, they also agreed in detecting very few pollen donors (Nep = 4.3–10.2) and a large variance in their reproductive success: 70% of males did not sire any offspring among the studied female plants and 5.5% of males were responsible for 50% of pollinations. Although we did not find reduced levels of genetic diversity, the adult population showed high levels of biparental inbreeding (14%) and strong spatial genetic structure (Sp = 0.012), probably due to restricted seed dispersal and scarce safe sites for recruitment. Overall, limited seed dispersal and the scarcity of successful pollen donors can be contributing to generate local pedigrees and to increase inbreeding, the prelude of genetic impoverishment.  相似文献   

16.
Tilia cordata Mill. is a valuable tree species enriching the ecological values of the coniferous‐dominated boreal forests in Europe. Following the historical decline, spreading of Tilia sp. is challenged by the elevated inbreeding and habitat fragmentation. We studied the geographical distribution of genetic diversity of Tilia cordata populations in Lithuania. We used 14 genomic microsatellite markers to genotype 543 individuals from 23 wild‐growing populations. We found that Tilia cordata retained high levels of genetic diversity (population F IS = 0–0.15, H o = 0.53–0.69, H e = 0.56–0.75). AMOVA, Bayesian clustering, and Monmonier''s barrier detection indicate weak but significant differentiation among the populations (F ST = 0.037***) into geographically interpretable clusters of (a) western Lithuania with high genetic heterogeneity but low genetic diversity, bottleneck effects, (b) relatively higher genetic diversity of Tilia cordata on rich and most soils of midland lowland, and (c) the most differentiated populations on poor soils of the coolest northeastern highland possessing the highest rare allele frequency but elevated inbreeding and bottleneck effects. Weak genetic differentiation among the Tilia cordata populations in Lithuania implies common ancestry, absence of strong adaptive gradients, and effective genetic exchange possible mediated via the riparian networks. A hypothesis on riparian networks as gene flow mediators in Tilia cordata was raised based on results of this study.  相似文献   

17.
Seed recruitment is a major driver of mangrove restoration globally. It is hypothesized that soil condition and channel hydrology can accelerate seedling recruitment and regeneration after a major disturbance. Species abundance, diversity indices, microbial and chemical concentrations in sand‐filled mangrove forest was studied. Eight plots measuring 487.77 m2 each were established with ten transects in each plot in a random block design to investigate the effect of soil conditions on seedling growth. A total of 1,886 seedlings were counted. Seedling abundance was significantly different between red (Rizophora racemosa), white (Laguncularia racemosa), and black (Avicennia germinans) mangroves, and nypa palm (nypa fruticans). The most dominant species was black mangrove, and the least dominant species was nypa palm. Muddy soils had the most abundant species (n = 994) followed by sandy (n = 457) and semi‐muddy (435) soils. Furthermore, sandy soils had the highest species diversity (H = 0.896) followed by semi‐muddy (H = 0.876) and muddy (H = 0.583) soils. The soil metal concentration has no correlation with seed abundance and occur in the order Iron > Nitrate > Copper > Cadmium. Soil with high species diversity had high soil microbial population; however, seedling abundance was correlated with soil nutrients and not heavy metals. Small seeds are easily recruited while good soil condition plus existing hydrological connection facilitated natural seedling regeneration in the disturbed mangrove forest.  相似文献   

18.
To understand colonization processes, it is critical to fully assess the role of dispersal in shaping biogeographical patterns at the gene, individual, population, and community levels. We test two alternative hypotheses (H I and H II) for the colonization of disturbed sites by clonal plants, by analyzing intraspecific genetic variation in one and reproductive traits in two typical fen mosses with separate sexes and intermittent spore dispersal, comparing disturbed, early‐succession (limed) fens and late‐successional rich fens. H I suggests initial colonization of disturbed sites by diverse genotypes of which fewer remain in late‐successional fens and an initially balanced sex ratio that develops into a possibly skewed population sex ratio. H II suggests initial colonization by few genotypes and gradual accumulation of additional genotypes and an initially skewed sex ratio that alters into the species‐specific sex ratio, during succession. Under both scenarios, we expect enhanced sexual reproduction in late‐successional fens due to resource gains and decreased intermate distances when clones expand. We show that the intraspecific genetic diversity, assessed by two molecular markers, in Scorpidium cossonii was higher and the genetic variation among sites was smaller in disturbed than late‐successional rich fens. Sex ratio was balanced in Scossonii and Campylium stellatum in disturbed fens and skewed in Cstellatum in late‐successional fens, thus supporting H I. In line with our prediction, sex expression incidence was higher in, and sporophytes were confined to, late‐succession compared to disturbed rich fens. Late‐successional Scossonii sites had more within‐site patches with two or more genotypes, and both species displayed higher sex expression levels in late‐successional than in disturbed sites. We conclude that diverse genotypes and both sexes disperse efficiently to, and successfully colonize new sites, while patterns of genetic variation and sexual reproduction in late‐successional rich fens are gradually shaped by local conditions and interactions over extended time periods.  相似文献   

19.
Yam is an important edible tuber and root plant worldwide; China as one of the native places of yams has many diverse local resources. The goal of this study was to clarify the genetic diversity of the commonly cultivated yam landraces and the genetic relationship between the main yam species in China. In this study, 26 phenotypic traits of 112 yam accessions from 21 provinces in China were evaluated, and 24 simple sequence repeat (SSR) and 29 sequence‐related amplified polymorphism (SRAP) markers were used for the genetic diversity analysis. Phenotypic traits revealed that Dioscorea opposita had the highest genetic diversity, followed by D. alata, D. persimilis, D. fordii, and D. esculenta. Among the 26 phenotypic traits, the Shannon diversity indexes of leaf shape, petiole color, and stem color were high, and the range in the variation of tuber‐related traits in the underground part was higher than that in the aboveground part. All accessions were divided into six groups by phenotypic trait clustering, which was also supported by principal component analysis (PCA). Molecular marker analysis showed that SSR and SRAP markers had good amplification effects and could effectively and accurately evaluate the genetic variation of yam. The unweighted pair‐group method with arithmetic means analysis based on SSR‐SRAP marker data showed that the 112 accessions were also divided into six groups, similar to the phenotypic trait results. The results of PCA and population structure analysis based on SSR‐SRAP data also produced similar results. In addition, the analysis of the origin and genetic relationship of yam indicated that the species D. opposita may have originated from China. These results demonstrate the genetic diversity and distinctness among the widely cultivated species of Chinese yam and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of Chinese yam resources.  相似文献   

20.
The distribution of wind‐dispersed seeds around a parent tree depends on diaspore and tree traits, as well as wind conditions and surrounding vegetation. This study of a neotropical canopy tree, Platypodium elegans, explored the extent to which parental variation in diaspore and tree traits explained (1) rate of diaspore descent in still air, (2) distributions of diaspores dispersed from a 40‐m tower in the forest, and (3) natural diaspore distributions around the parent tree. The geometric mean rate of descent in still air among 20 parents was highly correlated with geometric mean wing loading1/2 (r = 0.84). However, diaspore traits and rate of descent predicted less variation in dispersal distance from the tower, although descent rate−1 consistently correlated with dispersal distance. Measured seed shadows, particularly their distribution edges, differed significantly among six parents (DBH range 62–181 cm) and were best fit by six separate anisotropic dispersal kernels and surveyed fecundities. Measured rate of descent and tree traits, combined in a mechanistic seed dispersal model, did not significantly explain variation among parents in natural seed dispersal distances, perhaps due to the limited power to detect effects with only six trees. Seedling and sapling distributions were at a greater mean distance from the parents than seed distributions; saplings were heavily concentrated at far distances. Variation among parents in the distribution tails so critical for recruitment could not be explained by measured diaspore or tree traits with this sample size, and may be determined more by wind patterns and the timing of abscission in relation to wind conditions. Studies of wind dispersal need to devote greater field efforts at recording the “rare” dispersal events that contribute to far dispersal distances, following their consequences, and in understanding the mechanisms that generate them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号