首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this study, we established a single nucleotide mutation matrix (SNMM) model based on the relative binding affinities of NF-κB p50 homodimer to a wild-type binding site (GGGACTTTCC) and its all single-nucleotide mutants detected with the double-stranded DNA microarray. We evaluated this model by scoring different groups of 10-bp DNA sequences with this model and analyzing the correlations between the scores and the relative binding affinities detected with three wet experiments, including the electrophoresis mobility shift assay (EMSA), the protein-binding microarray (PBM) and the systematic evolution of ligands by exponential enrichment-sequencing (SELEX-Seq). The results revealed that the SNMM scores were strongly correlated with the detected binding affinities. We also scored the DNA sequences with other three models, including the principal coordinate (PC) model, the position weight matrix scoring algorithm (PWMSA) model and the Match model, and analyzed the correlations between the scores and the detected binding affinities. In comparison with these models, the SNMM model achieved reliable results. We finally determined 0.747 as the optimal threshold for predicting the NF-κB DNA-binding sites with the SNMM model. The SNMM model thus provides a new alternative model for scoring the relative binding affinities of NF-κB to the 10-bp DNA sequences and predicting the NF-κB DNA-binding sites.  相似文献   

4.
5.
1,25-Dihydroxyvitamin D (1,25(OH)2D3) is known to suppress NF-κB activity, but the underlying mechanism remains poorly understood. Here we show that the vitamin D receptor (VDR) physically interacts with IκB kinase β (IKKβ) to block NF-κB activation. 1,25(OH)2D3 rapidly attenuates TNFα-induced p65 nuclear translocation and NF-κB activity in a VDR-dependent manner. VDR overexpression inhibits IKKβ-induced NF-κB activity. GST pull-down assays and coimmunoprecipitation experiments demonstrated that VDR physically interacts with IKKβ and that this interaction is enhanced by 1,25(OH)2D3. Protein mapping reveals that VDR-IKKβ interaction occurs between the C-terminal portions of the VDR and IKKβ proteins. Reconstitution of VDR−/− cells with the VDR C terminus restores the ability to block TNFα-induced NF-κB activation and IL-6 up-regulation. VDR-IKKβ interaction disrupts the formation of the IKK complex and, thus, abrogates IKKβ phosphorylation at Ser-177 and abolishes IKK activity to phosphorylate IκBα. Consequently, stabilization of IκBα arrests p65/p50 nuclear translocation. Together, these data define a novel mechanism whereby 1,25(OH)2D3-VDR inhibits NF-κB activation.  相似文献   

6.
Total internal reflection fluorescence-based single-molecule Förster resonance energy transfer (FRET) measurements were previously carried out on the ankyrin repeat domain (ARD) of IκBα, the temporally regulated inhibitor of canonical NFκB signaling. Under native conditions, most of the IκBα molecules showed stable, high FRET signals consistent with distances between the fluorophores estimated from the crystal structures of the NFκB(RelA/p50)-IκBα complex. Similar high FRET efficiencies were found when the IκBα molecules were either free or in complex with NFκB(RelA/p50), and were interpreted as being consistent with the crystallographically observed ARD structure. An exception to this was observed when the donor and acceptor fluorophores were attached in AR3 (residue 166) and AR6 (residue 262). Surprisingly, the FRET efficiency was lower for the bound IκBα molecules (0.67) than for the free IκBα molecules (0.74), apparently indicating that binding of NFκB(RelA/p50) stretches the ARD of IκBα. Here, we conducted confocal-based single-molecule FRET studies to investigate this phenomenon in greater detail. The results not only recapitulated the apparent stretching of the ARD but also showed that the effect was more pronounced when the N-terminal domains (NTDs) of both RelA and p50 were present, even though the interface between NFκB(RelA/p50) and IκBα encompasses only the dimerization domains. We also performed mass spectrometry-detected amide hydrogen/deuterium exchange (HDXMS) experiments on IκBα as well as IκBα bound to dimerization-domain-only constructs or full-length NFκB(RelA/p50). Although we expected the stretched IκBα to have regions with increased exchange, instead the HDXMS experiments showed decreases in exchange in AR3 and AR6 that were more pronounced when the NFκB NTDs were present. Simulations of the interaction recapitulated the increased distance between residues 166 and 262, and also provide a plausible mechanism for a twisting of the IκBα ARD induced by interactions of the IκBα proline-glutamate-serine-threonine-rich sequence with positively charged residues in the RelA NTD.  相似文献   

7.
8.
9.
10.
11.
12.
The αvβ3 integrin plays a fundamental role during the angiogenesis process by inhibiting endothelial cell apoptosis. However, the mechanism of inhibition is unknown. In this report, we show that integrin-mediated cell survival involves regulation of nuclear factor-kappa B (NF-κB) activity. Different extracellular matrix molecules were able to protect rat aorta- derived endothelial cells from apoptosis induced by serum withdrawal. Osteopontin and β3 integrin ligation rapidly increased NF-κB activity as measured by gel shift and reporter activity. The p65 and p50 subunits were present in the shifted complex. In contrast, collagen type I (a β1-integrin ligand) did not induce NF-κB activity. The αvβ3 integrin was most important for osteopontin-mediated NF-κB induction and survival, since adding a neutralizing anti-β3 integrin antibody blocked NF-κB activity and induced endothelial cell death when cells were plated on osteopontin. NF-κB was required for osteopontin- and vitronectin-induced survival since inhibition of NF-κB activity with nonphosphorylatable IκB completely blocked the protective effect of osteopontin and vitronectin. In contrast, NF-κB was not required for fibronectin, laminin, and collagen type I–induced survival. Activation of NF-κB by osteopontin depended on the small GTP-binding protein Ras and the tyrosine kinase Src, since NF-κB reporter activity was inhibited by Ras and Src dominant-negative mutants. In contrast, inhibition of MEK and PI3-kinase did not affect osteopontin-induced NF-κB activation. These studies identify NF-κB as an important signaling molecule in αvβ3 integrin-mediated endothelial cell survival.  相似文献   

13.
Utilizing the Citrobacter rodentium-induced transmissible murine colonic hyperplasia (TMCH) model, we measured hyperplasia and NF-κB activation during progression (days 6 and 12 post-infection) and regression (days 20–34 post-infection) phases of TMCH. NF-κB activity increased at progression in conjunction with bacterial attachment and translocation to the colonic crypts and decreased 40% by day 20. NF-κB activity at days 27 and 34, however, remained 2–3-fold higher than uninfected control. Expression of the downstream target gene CXCL-1/KC in the crypts correlated with NF-κB activation kinetics. Phosphorylation of cellular IκBα kinase (IKK)α/β (Ser176/180) was elevated during progression and regression of TMCH. Phosphorylation (Ser32/36) and degradation of IκBα, however, contributed to NF-κB activation only from days 6 to 20 but not at later time points. Phosphorylation of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), and p38 (Thr180/Tyr182) paralleled IKKα/β kinetics at days 6 and 12 without declining with regressing hyperplasia. siRNAs to MEK, ERK, and p38 significantly blocked NF-κB activity in vitro, whereas MEK1/2-inhibitor (PD98059) also blocked increases in MEK1/2, ERK1/2, and IKKα/β thereby inhibiting NF-κB activity in vivo. Cellular and nuclear levels of Ser536-phosphorylated (p65536) and Lys310-acetylated p65 subunit accompanied functional NF-κB activation during TMCH. RSK-1 phosphorylation at Thr359/Ser363 in cellular/nuclear extracts and co-immunoprecipitation with cellular p65-NF-κB overlapped with p65536 kinetics. Dietary pectin (6%) blocked NF-κB activity by blocking increases in p65 abundance and nuclear translocation thereby down-regulating CXCL-1/KC expression in the crypts. Thus, NF-κB activation persisted despite the lack of bacterial attachment to colonic mucosa beyond peak hyperplasia. The MEK/ERK/p38 pathway therefore seems to modulate sustained activation of NF-κB in colonic crypts in response to C. rodentium infection.  相似文献   

14.
15.
16.
17.
We examined, by 1H and 31P NMR, the solution structure of a 16 bp non-palindromic DNA fragment (16M2) containing the HIV-1 NF-κB-binding site, in which the sequences flanking the κB site had been mutated. 31P NMR was particularly useful for obtaining structural information on the phosphodiester backbone conformation. Structural features were then compared with those of the two previously studied DNA fragments corresponding, respectively, to the native κB fragment (16N) and a fragment in which mutations have been introduced at the 5′ end of the κB site (16M1). For the mutated 16M2 duplex, NMR data showed that the BI–BII equilibrium, previously reported for the native fragment (16N) at the κB flanking steps, was lost. The role of the BI–BII equilibrium in NF-κB recognition by DNA was then investigated by electrophoretic mobility shift assay. We found that the isolated κB site has the potential to bind efficiently due to the BI–BII equilibrium of the κB flanking sequences.  相似文献   

18.
Higher eukaryotes encode various Y-family DNA polymerases to perform global DNA lesion bypass. To provide complete mutation spectra for abasic lesion bypass, we employed short oligonucleotide sequencing assays to determine the sequences of abasic lesion bypass products synthesized by human Y-family DNA polymerases eta (hPolη), iota (hPolι) and kappa (hPolκ). The fourth human Y-family DNA polymerase, Rev1, failed to generate full-length lesion bypass products after 3 h. The results indicate that hPolι generates mutations with a frequency from 10 to 80% during each nucleotide incorporation event. In contrast, hPolη is the least error prone, generating the fewest mutations in the vicinity of the abasic lesion and inserting dAMP with a frequency of 67% opposite the abasic site. While the error frequency of hPolκ is intermediate to those of hPolη and hPolι, hPolκ has the highest potential to create frameshift mutations opposite the abasic site. Moreover, the time (t50bypass) required to bypass 50% of the abasic lesions encountered by hPolη, hPolι and hPolκ was 4.6, 112 and 1 823 s, respectively. These t50bypass values indicate that, among the enzymes, hPolη has the highest abasic lesion bypass efficiency. Together, our data suggest that hPolη is best suited to perform abasic lesion bypass in vivo.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号