首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The effect of serum, phorbol-12-myristate-13-acetate (TPA), and forskolin on the activity Na+/H+ antiport and the Na(+)-coupled and Na(+)-independent Cl-/HCO3- antiport was studied in Vero cells by measuring 22Na+ and 36Cl- fluxes and changes in cytosolic pH (pHi). The Na(+)-independent Cl-/HCO3- antiport, which acts as an acidifying mechanism, is strongly pH-sensitive. In serum-starved cells it is activated at alkaline cytosolic pH, with a half-maximal activity at pHi approximately 7.20. Incubation with serum increased the activity of the Na(+)-independent Cl-/HCO3- antiport at pHi values from 6.8 to 7.2. Thus serum appeared to alter the pHi sensitivity of this antiporter such that the threshold value for activation of the antiport was shifted to a more acidic value. Na+/H+ antiport was somewhat stimulated initially by addition of serum, but further incubation with serum (greater than 45 min) decreased its activity. The activity of the Na(+)-coupled Cl-/HCO3- antiport, which is the major alkalinizing antiport in Vero cells, was not altered by short-term incubation with serum (less than 10 min) but decreased after prolonged incubation (greater than 45 min). Our findings with TPA and forskolin indicate that the effect of serum is partly mediated by the protein kinase C pathway, whereas the cyclic adenosine monophosphate pathway does not appear to play an important role. The net effect of serum on the pHi-regulating antiports was a slight decrease in intracellular pH.  相似文献   

2.
Primary cultures of rat renal inner medullary collecting duct cells were grown to confluence on glass coverslips and treated permeant supports, and the pH-sensitive fluorescent probe 2,7-biscarboxyethyl-5,6-carboxyfluorescein was employed to delineate the nature of the transport pathways that allowed for recovery from an imposed acid load in a HCO3-/CO2-buffered solution. The H+ efflux rate of acid-loaded cells was 13.44 +/- 0.94 mM/min. Addition of amiloride, 10(-4) M, to the recovery solution reduced the H+ efflux rate to 4.06 +/- 0.63 mM/min. The amiloride-resistant pHi recovery mechanism displayed an absolute requirement for Na+ but was Cl(-)-independent. Studies performed on permeable supports demonstrated that the latter pathway was located primarily on the basolateral-equivalent (BE) cell surface and was inhibited by 50 microM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). In a Na(+)-replete solution containing DIDS (50 microM) and amiloride (10(-4) M), acid-loaded cells failed to return to basal pHi. To delineate further the amiloride-inhibitable component of pHi recovery, monolayers were studied in the nominal absence of HCO3-/CO2. In 70% of monolayers studied, Na(+)-dependent, amiloride-inhibitable H+ efflux was the sole mechanism whereby acid-loaded cells returned to basal pHi. A Na(+)-independent pathway was observed in 30% of monolayers examined and represented only a minor component of the pHi recovery process. In studies performed on permeable supports, the Na(+)-dependent amiloride-inhibitable pathway was found to be confined exclusively to the BE cell surface. In summary, confluent monolayers of rat renal inner medullary collecting duct cells in primary culture possess two major mechanisms that contribute toward recovery from an imposed acid load, namely, Na+/H+ antiport and Na+/HCO3- cotransport. Na(+)-independent pHi recovery mechanisms represent a minor component of the pHi recovery process in the cultured cell. Both the Na+/H+ antiporter and Na+/HCO3- cotransporter are located primarily on the BE cell surface.  相似文献   

3.
The PS120 variant of Chinese hamster lung fibroblasts which lacks Na+/H+ exchange activity was used to investigate bicarbonate transport systems and their role in intracellular pH (pHi) regulation. When pHi was decreased by acid load, bicarbonate caused pHi increase and stimulated 36Cl- efflux from the cells, both in a Na+-dependent manner. These results together with previous findings that bicarbonate stimulates 22Na+ uptake in PS120 cells (L'Allemain, G., Paris, S., and Pouyssegur, J. (1985) J. Biol. Chem. 260, 4877-4883) demonstrate the presence of a Na+-linked Cl-/HCO3- exchange system. In cells with normal initial pHi, bicarbonate caused Na+-independent pHi increase in Cl(-)-free solutions and stimulated Na+-independent 36Cl- efflux, indicating that a Na+-independent Cl-/HCO3- exchanger is also present in the cell. Na+-linked and Na+-independent Cl-/HCO3- exchange is apparently mediated by two distinct systems, since a [(tetrahydrofluorene-7-yl)oxy]acetic acid derivative selectively inhibits the Na+-independent exchanger. An additional distinctive feature is a 10-fold lower affinity for chloride of the Na+-linked exchanger. The Na+-linked and Na+-independent Cl-/HCO3- exchange systems are likely to protect the cell from acid and alkaline load, respectively.  相似文献   

4.
Several carriers mediate ionic fluxes across the plasma membrane in a variety of mammalian cell types. Intracellular proton concentration is regulated by virtue of the operation of at least two distinct systems: a stilbene-sensitive, Na+- dependent HCO3-/Cl- exchange system, and an amiloride-sensitive Na+/H+ antiporter. The contribution of these two transporters to the modulation of intracellular pH in response to either extracellular pH variations or cell stimulation by growth factors and tumor promoters has been studied in several cell lines, including fibroblast mutants lacking Na+/H+ antiport activity. The attainment of a permissive intracellular pH value is critical to the development of the mitogenic response elicited by growth factors. Kinetic studies have revealed particular features of the Na+/H+ antiporter that explain its function in the early sequence of biochemical events leading to DNA replication. The detailed investigation of the mechanisms by which protons and other ions might regulate cell proliferation has important implications for the understanding of the role of pH microenvironment in carcinogenesis, tumor development and chemotherapy.  相似文献   

5.
The pancreatic duct secretes alkaline fluid that is rich in HCO3- and poor in Cl-. The molecular mechanisms that mediate ductal secretion and are responsible for the axial gradients of Cl- and HCO3- along the ductal tree are not well understood because H+ and HCO3- transport by duct cells have not been characterized or localized. To address these questions, we microdissected the intralobular, main, and common segments of the rat pancreatic duct. H+ and HCO3- transporters were characterized and localized by following intracellular pH while perfusing the bath and the lumen of the ducts. In intralobular ducts, Na(+)-dependent and amiloride-sensitive recovery from acid load in the absence of HCO3- was used to localize a Na+/H+ exchanger to the basolateral membrane (BLM). Modification of Cl- gradients across the luminal (LM) and BLM in the presence of HCO3- showed the presence of Cl- /HCO3- exchangers on both membranes of intralobular duct cells. Measurement of the effect of Cl- on one side of the membrane on the rate and extent of pHi changes caused by removal and addition of Cl- to the opposite side suggested that both exchangers are present in the same cell. In the presence of HCO3-, intralobular duct cells used three separate mechanisms to extrude H+: (a) BLM-located Na+/H+ exchange, (b) Na(+)-independent vacuolar-type H+ pump, and (c) BLM-located, Na(+)- dependent, amiloride-insensitive, and 4',4'-diisothiocyanatostilbene- 2,2'-disulfonic acid sensitive mechanism, possibly a Na(+)-dependent HCO3- transporter. The main and common segments of the duct displayed similar mechanisms and localization of H+ and HCO3- transporters to the extent studied in the present work. In addition to the transporters found in intralobular ducts, the main and common ducts showed Na+/H+ exchange activity in the LM. Three tests were used to exclude a significant luminal to basolateral Na+ leak as the cause for an apparent luminal Na+/H+ exchange in an HCO3- secreting cells: (a) addition of amiloride and removal of Na+ from the LM had a profound effect on Na+/H+ exchange activity on the BLM and vice versa; (b) inhibition of all transporters in the BLM by bathing the duct in the inert hydrocarbon Fluorinert FC-75 did not prevent cytosolic acidification caused by removal of luminal Na+; and (c) luminal Na+ did not activate the basolateral Na(+)-dependent HCO3- transporter. An Na(+)-independent, bafilomycin-sensitive H+ pumping activity was marginal in the absence of HCO3-.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Using the pH-sensitive absorbance of 5 (and 6)-carboxy-4',5'- dimethylfluorescein, we investigated the regulation of cytoplasmic pH (pHi) in monkey kidney epithelial cells (BSC-1). In the absence of HCO3-, pHi is 7.15 +/- 0.1, which is not significantly different from pHi in 28 mM HCO3-, 5% CO2 (7.21 +/- 0.07). After an acid load, the cells regulate pHi in the absence of HCO3- by a Na+ (or Li+)-dependent, amiloride-inhibitable mechanism (indicative of Na+/H+ antiport). In 28 mM HCO3-, while still dependent on Na+, this regulation is only blocked in part by 1 mM amiloride. A partial block is also observed with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (1 mM). With cells pretreated with DIDS, 1 mM amiloride nearly totally inhibits this regulation. Cl- had no effect on pHi regulation in the acidic range. In HCO3(-)-free saline, Na+ removal leads to an amiloride-insensitive acidification, which is dependent on Ca2+. In 28 mM HCO3-, Na+ (and Ca2+) removal led to a pronounced reversible and DIDS-sensitive acidification. When HCO3- was lowered from 46 to 10 mM at constant pCO2 (5%), pHi dropped by a DIDS-sensitive mechanism. Identical changes in pHo (7.6 to 6.9) in the nominal absence of HCO3- led to smaller changes of pHi. In the presence but not in the absence of HCO3-, removal of Cl- led to a DIDS-sensitive alkalinization. This was also observed in the nominal absence of Na+, which leads to a sustained acidification. It is concluded that in nominally bicarbonate-free saline, the amiloride-sensitive Na+/H+ antiport is the predominant mechanism of pHi regulation at acidic pHi, while being relatively inactive at physiological values of pHi. In bicarbonate saline, two other mechanisms effect pHi regulation: a DIDS-sensitive Na+-HCO3- symport, which contributes to cytoplasmic alkalinization, and a DIDS-sensitive Cl-/HCO3- exchange, which is apparently independent of Na+.  相似文献   

7.
We previously reported that, in a HCO3(-)-free medium, cytoplasmic pH (pHi) of hamster fibroblasts (CCL39) is primarily regulated by an amiloride-sensitive Na+/H+ antiport (L'Allemain, G., Paris, S., and Pouysségur, J. (1984) J. Biol. Chem. 259, 5809-5815). Here we demonstrate the existence of an additional pHi-regulating mechanism in CCL39 cells, namely a Na+-dependent HCO3-/Cl- exchange. Evidence for this system is based on 36Cl- influx studies and on pHi measurements in PS120, a CCL39-derived mutant lacking the Na+/H+ antiport activity. 36Cl- influx rate is a saturable function of external [Cl-] (apparent Km approximately equal to 7 mM), is competitively inhibited by external HCO3- (KI approximately equal to 3 mM), and by stilbene derivatives (KI approximately equal to 20 microM for 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid). Measurements of pHi recovery after an acute acid load indicate that PS120 cells possess an acid-extruding mechanism dependent on external HCO3-, which is inhibited by stilbene derivatives and requires external Na+. Since 22Na+ influx is stimulated upon addition of HCO3- to acid-loaded cells and this effect is completely abolished by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, we conclude that Na+ is co-transported with HCO3-, in exchange for intracellular Cl-. In a HCO3(-)-containing medium, this pHi-regulating mechanism appears to have two essential physiological functions for the Na+/H+ antiport-deficient mutant: protection of the cells against excessive cytoplasmic acidification and establishment of a steady-state pHi permissive for growth, at neutral or slightly acidic pHo values (6.6-7.2).  相似文献   

8.
Hypoxic pulmonary vasoconstriction (HPV) occurs in smooth muscle cells (SMC) from small pulmonary arteries (SPA) and is accompanied by increases in free cytoplasmic calcium ([Ca2+]i) and cytoplasmic pH (pHi). SMC from large pulmonary arteries (LPA) relax during hypoxia, and [Ca2+]i and pHi decrease. Increases in pHi and [Ca2+]i in cat SPA SMC during hypoxia and the augmentation of hypoxic pulmonary vasoconstriction by alkalosis seen in isolated arteries and lungs suggest that cellular mechanisms, which regulate inward and outward movement of Ca2+ and H+, may participate in the generation of HPV. SMC transport systems that regulate pHi include the Na+ - H+ transporter which regulates intracellular Na+ and H+ and aids in recovery from acid loads, and the Na+ -dependent and Na+ -independent Cl-/HCO3- transporters which regulate intracellular chloride. The Na+ -dependent Cl-/HCO3- transporter also aids in recovery from acidosis in the presence of CO2 and HCO3-. The Na+ -independent Cl-/HCO3- transporter aids in recovery from cellular alkalosis. The Na+ - H+ transporter was present in SMC from SPA and LPA of the cat, but it seemed to have little if any role in regulating pHi in the presence of CO2 and HCO3-. Inhibiting the Cl-/HCO3- transporters reversed the normal direction of pHi change during hypoxia, suggesting a role for these transporters in the hypoxic response. Future studies to determine the interaction between pHi, [Ca2+]i and HPV should ascertain whether pHi and [Ca2+]i changes are linked and how they may interact to promote or inhibit SMC contraction.  相似文献   

9.
The effects of compounds previously described to inhibit anion transport were tested for their ability to inhibit anion antiport in Vero cells as measured by uptake of 36Cl- by chloride self-exchange and as bicarbonate-linked uptake of 22Na+. While 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid inhibited both processes, ethacrynic acid and probenecid selectively inhibited the uptake of 36Cl-. Low concentrations of pyridoxal phosphate and picrylsulfonic acid selectively inhibited the bicarbonate linked uptake of 22Na+, while higher concentrations of these compounds also inhibited the uptake of 36Cl-. Measurements of the internal pH indicated that ethacrynic acid inhibits Na+-independent HCO-3/Cl- exchange, while it has no measurable effect on Na+-linked bicarbonate-dependent regulation of the internal pH. Conversely, picrylsulfonic acid selectively inhibits the latter process. The results indicate that anion antiport in Vero cells occurs by two independent processes.  相似文献   

10.
The technique for the simultaneous recording of cell volume changes and pHi in single cells was used to study the role of HCO3- in regulatory volume decrease (RVD) by the osteosarcoma cells UMR-106-01. In the presence of HCO3-, steady state pHi is regulated by Na+/H+ exchange, Na+ (HCO3-)3 cotransport and Na(+)-independent Cl-/HCO3- exchange. Following swelling in hypotonic medium, pHi was reduced from 7.16 +/- 0.02 to 6.48 +/- 0.02 within 3.4 +/- 0.28 min. During this period of time, the cells performed RVD until cell volume was decreased by 31 +/- 5% beyond that of control cells (RVD overshoot). Subsequently, while the cells were still in hypotonic medium, pHi slowly increased from 6.48 +/- 0.02 to 6.75 +/- 0.02. This increase in pHi coincided with an increase in cell volume back to normal (recovery from RVD overshoot or hypotonic regulatory volume increase (RVI)). The same profound changes in cell volume and pHi after cell swelling were observed in the complete absence of Cl- or Na+, providing HCO3- was present. On the other hand, depolarizing the cells by increasing external K+ or by inhibition of K+ channels with quinidine, Ba2+ or tetraethylammonium prevented the changes in pHi and RVD. These findings suggest that in the presence of HCO3-, RVD in UMR-106-01 cells is largely mediated by the conductive efflux of K+ and HCO3-. Removal of external Na+ but not Cl- prevented the hypotonic RVI that occurred after the overshoot in RVD. Amiloride had no effect, whereas pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited hypotonic RVI. Thus, hypotonic RVI is mediated by a Na+(out)-dependent, Cl(-)-independent and DIDS-inhibitable mechanism, which is indicative of a Na+(HCO3-)3 cotransporter. This is the first evidence for the involvement of this transporter in cell volume regulation. The present results also stress the power of the new technique used in delineating complicated cell volume regulatory mechanisms in attached single cells.  相似文献   

11.
Mouse embryos at the two-cell stage, like other cells, can recover from an intracellular acid-load. Our previous work has shown, surprisingly, that there is no contribution to this recovery by Na+/H+ antiport activity. Here we show that the recovery similarly is not affected by inhibition of other known intracellular pH (pHi) regulatory mechanisms. Specifically, the recovery is unaffected by lack of external Na+, inhibition of anion exchange, or lack of bicarbonate, which eliminates the Na(+)-dependent HCO3-/Cl- exchanger as a possible mechanisms. These conditions also eliminate any possible Na+,HCO3- cotransporter operating to relieve acid-loading. Recovery is unaffected similarly by nonspecific inhibitors of H(+)-ATPase activity. These observations lead to the conclusion that recovery from acid-load is a passive process in the two-cell mouse embryo. Similarly, the mean base-line pHi (6.84) is not dependent on known pHi regulatory mechanisms. The embryos exhibit a marked intracellular alkalinization when exposed to Cl(-)-free medium in the presence of bicarbonate. This response is eliminated by an inhibitor of anion exchange and by lack of bicarbonate, but is independent of Na+. These results indicate that there is probably a Na(+)-independent HCO3-/Cl- exchanger active in these cells, presumably functioning to alleviate alkaline loads.  相似文献   

12.
This study addresses the mechanisms by which a defect in CFTR impairs pancreatic duct bicarbonate secretion in cystic fibrosis. We used control (PANC-1) and CFTR-deficient (CFPAC-1; DeltaF508 mutation) cell lines and measured HCO3- extrusion by the rate of recovery of intracellular pH after an alkaline load and recorded whole cell membrane currents using patch clamp techniques. 1) In PANC-1 cells, cAMP causes parallel activation of Cl- channels and of HCO3- extrusion by DIDS-sensitive and Na+-independent Cl-/HCO3- exchange, both effects being inhibited by Cl- channel blockers NPPB and glibenclamide. 2) In CFPAC-1 cells, cAMP fails to stimulate Cl-/HCO3- exchange and Cl- channels, except after promoting surface expression of DeltaF508-CFTR by glycerol treatment. Instead, raising intracellular Ca2+ concentration to 1 micromol/l or stimulating purinergic receptors with ATP (10 and 100 micromol/l) leads to parallel activation of Cl- channels and HCO3- extrusion. 3) K+ channel function is required for coupling cAMP- and Ca2+-dependent Cl- channel activation to effective stimulation of Cl-/HCO3- exchange in control and CF cells, respectively. It is concluded that stimulation of pancreatic duct bicarbonate secretion via Cl-/HCO3- exchange is directly correlated to activation of apical membrane Cl- channels. Reduced bicarbonate secretion in cystic fibrosis results from defective cAMP-activated Cl- channels. This defect is partially compensated for by an increased sensitivity of CF cells to purinergic stimulation and by alternative activation of Ca2+-dependent Cl- channels, mechanisms of interest with respect to possible treatment of cystic fibrosis and of related chronic pancreatic diseases.  相似文献   

13.
Two mechanisms are involved in the regulation of the intracellular pH (pHi) of aortic smooth muscle cells: the Na+/H+ antiporter and a Na+-independent HCO3-/Cl- antiporter. The Na+/H+ antiporter acts as a cell alkalinizing mechanism. It is activated by vasopressin and by phorbol esters when cells are incubated in the presence of bicarbonate but is not affected in the absence of bicarbonate. The HCO3-/Cl- antiporter acts as a cell acidifying mechanism. Agents such as forskolin, 8-Br-cAMP, and isoproterenol which raise intracellular cAMP levels inhibit the HCO3-/Cl- antiporter by shifting its pHi dependence in the alkaline direction. Thus, within the same cell type, different hormones control pHi variations by acting on different pHi regulating systems. An increase in pHi can be achieved either by a stimulation of a cell alkalinizing mechanism or by inhibition of a cell acidifying mechanism. A change of the activity of one pHi regulating mechanism modifies the responsiveness of the other to regulatory agents. Bicarbonate turns on the HCO3-/Cl- antiporter, decreases pHi and allows its regulation by protein kinase C through the Na+/H+ antiporter. Inhibition of the HCO3-/Cl- antiporter by cAMP increases the pHi and switches off the protein kinase C-mediated regulation.  相似文献   

14.
The purposes of this study were to determine 1) the presence of the major ion transport activities that regulate cytoplasmic pH (pH(c)) in cat pulmonary artery smooth muscle cells, i.e., Na+/H+ and the Na+-dependent and -independent Cl-/HCO3- exchange, 2) whether pH(c) changes in cells from small (SPAs) and large (LPAs) pulmonary arteries during hypoxia, and 3) whether changes in pH(c) are due to changes in the balance of exchange activities. Exchange activities as defined by physiological maneuvers rather than molecular identity were ascertained with fluorescence microscopy to document changes in the ratio of the pH(c) indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Steady-state pH(c) was higher in LPA than in SPA normoxic smooth muscle cells. SPAs and LPAs possessed all three transport activities; in HCO3- containing normoxic solutions, Cl-/HCO3- exchange rather than Na+/H+ exchange set the level of pH(c); in HCO3- containing hypoxic solutions, pH(c) increased in SPA and decreased in LPA cells; altering the baseline pH(c) of a cell type to that of the other did not change the direction of the pH(c) response during hypoxia. The absence of Na+ prevented hypoxia-induced alkalinization in SPA cells; in both cell types, inhibiting the Cl-/HCO3- exchange activities reversed the normal direction of pH(c) changes during hypoxia.  相似文献   

15.
Addition of growth factors to responsive cells in HCO3- -free media results in a rapid rise in cytoplasmic pH (pHi) caused by activation of Na+/H+ exchange. In this paper, we have examined how pHi regulation and growth factor responsiveness are affected by HCO3(-)using quiescent mouse MES-1 fibroblastic cells as a model. When cells are exposed to 25 mM HCO3-, 5% CO2, steady-state pHi reaches a new more alkaline level (by 0.25 unit) within 10 min. This rise in pHi is both Na+- and HCO3- -dependent, does not occur in Cl(-)-depleted cells, and is inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, but not by 5-(n,n-dimethyl)-amiloride, indicating the involvement of Na+-dependent HCO3-/Cl- exchange. Furthermore, the recovery of pHi from acute acid loads is accelerated by HCO3- in a Na+-dependent and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid-sensitive manner and is blocked in Cl(-) -depleted cells. Similar results were obtained for mouse 3T3 cells and human fibroblasts. In the presence of HCO3-/CO2 (pH 7.35), mitogens and phorbol esters fail to induce a detectable rise in pHi. However, when steady-state pHi is artificially lowered by approximately 0.4 unit, growth factors evoke significant increases in pHi due to activation of Na+/H+ exchange. In the absence of HCO3-, mitogen-induced alkalinizations are readily detectable but not when pHi is artificially elevated to the value normally observed in HCO3- media. From these results we conclude that: 1) Na+-dependent HCO3-/Cl- exchange determines steady-state pHi and acts in parallel with Na+/H+ exchange to stimulate pHi recovery from acid loading; 2) Na+-dependent HCO3-/Cl- exchange raises steady-state pHi to a level beyond the operating range of the Na+/H+ exchanger and thereby prevents growth factors from alkalinizing the cytoplasm any further. The results also imply that, unlike Na+/H+ exchange, Na+-dependent HCO3-/Cl- exchange is not activated by mitogens.  相似文献   

16.
U937 cell possess two mechanisms that allow them to recover from an intracellular acidification. The first mechanism is the amiloride-sensitive Na+/H+ exchange system. The second system involves bicarbonate ions. Its properties have been defined from intracellular pH (pHi) recovery experiments, 22Na+ uptake experiments, 36Cl- influx and efflux experiments. Bicarbonate induced pHi recovery of the cells after a cellular acidification to pHi = 6.3 provided that Na+ ions were present in the assay medium. Li+ or K+ could not substitute for Na+. The system seemed to be electroneutral. 22Na+ uptake experiments showed the presence of a bicarbonate-stimulated uptake pathway for Na+ which was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate. The bicarbonate-dependent 22Na+ uptake component was reduced by depleting cells of their internal Cl- and increased by removal of external Cl-. 36Cl- efflux experiments showed that the presence of both external Na+ and bicarbonate stimulated the efflux of 36Cl- at a cell pHi of 6.3. Finally a 36Cl- uptake pathway was documented. It was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonate (K0.5 = 10 microM) and bicarbonate (K0.5 = 2 mM). These results are consistent with the presence in U937 cells of a coupled exchange of Na+ and bicarbonate against chloride. It operates to raise the intracellular pH. Its pHi and external Na+ dependences were defined. No evidence for a Na+-independent Cl-/HCO3- exchange system could be found. The Na+-dependent Cl-/HCO3- exchange system was relatively insensitive to (aryloxy)alkanoic acids which are potent inhibitors of bicarbonate-induced swelling of astroglia and of the Li(Na)CO3-/Cl- exchange system of human erythrocytes. It is concluded that different anionic exchangers exist in different cell types that can be distinguished both by their biochemical properties and by their pharmacological properties.  相似文献   

17.
Espie GS  Kandasamy RA 《Plant physiology》1994,104(4):1419-1428
The effect of monensin, an ionophore that mediates Na+/H+ exchange, on the activity of the inorganic carbon transport systems of the cyanobacterium Synechococcus UTEX 625 was investigated using transport assays based on the measurement of chlorophyll a fluorescence emission or 14C uptake. In Synechococcus cells grown in standing culture at about 20 [mu]M CO2 + HCO3-, 50 [mu]M monensin transiently inhibited active CO2 and Na+-independent HCO3- transport, intracellular CO2 and HCO3- accumulation, and photosynthesis in the presence but not in the absence of 25 mM Na+. These activities returned to near-normal levels within 15 min. Transient inhibition was attributed to monensin-mediated intracellular alkalinization, whereas recovery may have been facilitated by cellular mechanisms involved in pH homeostasis or by monensin-mediated H+ uptake with concomitant K+ efflux. In air-grown cells grown at 200 [mu]M CO2 + HCO3- and standing culture cells, Na+-dependent HCO3- transport, intracellular HCO3- accumulation, and photosynthesis were also inhibited by monensin, but there was little recovery in activity over time. However, normal photosynthetic activity could be restored to air-grown cells by the addition of carbonic anhydrase, which increased the rate of CO2 supply to the cells. This observation indicated that of all the processes required to support photosynthesis only Na+-dependent HCO3- transport was significantly inhibited by monensin. Monensin-mediated dissipation of the Na+ chemical gradient between the medium and the cells largely accounted for the decline in the HCO3- accumulation ratio from 751 to 55. The two HCO3- transport systems were further distinguished in that Na+-dependent HCO3- transport was inhibited by Li+, whereas Na+-independent HCO3- transport was not. It is suggested that Na+-dependent HCO3- transport involves an Na+/HCO3- symport mechanism that is energized by the Na+ electrochemical potential.  相似文献   

18.
Rat pancreatic acini loaded with the pH sensitive fluorescent dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein were used to characterize intracellular pH (pHi) regulatory mechanisms in these cells. The acini were attached to cover slips and continuously perfused. In 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered solutions recovery from acid load (H+ efflux) required extracellular Na+ (Na+out) and was blocked by amiloride. Likewise, H+ influx initiated by removal of Na+out was blocked by amiloride. Hence, in HEPES-buffered medium the major operative pHi regulatory mechanism is a Na+/H+ exchange. In HCO3(-)-buffered medium, amiloride only partially blocked recovery from acid load and acidification due to Na+out removal. The remaining fraction required Na+out, was inhibited by H2-4,4'-diisothiocyanostilbene-2,2'-disulfunic acid (H2DIDS) and was independent of C1-. Hence, a transporter with characteristics of a Na(+)-HCO3- cotransport exists in pancreatic acini. Measurement of pHi changes due to Na(+)-HCO3- cotransport, suggests that the transporter contributes to HCO3- efflux under physiological conditions. Changing the Cl- gradient across the plasma membrane of acini maintained in HCO3(-)-buffered solutions reveals the presence of an H2DIDS-sensitive, Na(+)-independent, Cl(-)-dependent, HCO3- transporter with characteristics of a Cl-/HCO3- exchanger. In pancreatic acini the exchanger transports HCO3- but not OH- and under physiological conditions functions to remove HCO3- from the cytosol. In summary, only the Na+/H+ exchanger is functional in HEPES-buffered medium to maintain pHi at 7.28 +/- 0.03. In the presence of 25 mM HCO3- at pHo of 7.4, all the transporters operate simultaneously to maintain a steady-state pHi of 7.13 +/- 0.04.  相似文献   

19.
Amiloride is a potent inhibitor of the Na+/H+ antiport. Inhibition is generally competitive with extracellular Na+ and therefore believed to result from binding to the outward-facing transport site. It is not known whether amiloride can interact with the internal aspect of the antiport. This question was addressed by trapping the drug inside resealed dog red cell ghosts. The antiport, which is quiescent in resting ghosts, was activated by acid-loading the cytoplasm. This was accomplished by exchanging extracellular Cl- for internal HCO-3 through capnophorin, the endogenous anion exchanger. The activity of the Na+/H+ antiport was detected as an increase in cell volume, resulting from the net osmotic gain associated with coupled Na+/H+ and Cl-/HCO-3 exchange, or as the uptake of 22Na+. Intracellular amiloride, at concentrations in excess of 100 microM, failed to inhibit Na+/H+ exchange. This is approximately 10 times higher than the concentration required for half-maximal inhibition when amiloride is added externally. Independent experiments demonstrated that failure of internal amiloride to inhibit exchange was not due to leakage of the inhibitor, to differences in pH, or to binding or inactivation of amiloride by the soluble contents. It was concluded that the antiport is functionally asymmetric with respect to amiloride. This implies that the transport site undergoes a conformational change upon translocation across the membrane or, alternatively, that a second site required for amiloride binding is only accessible from the outside.  相似文献   

20.
The contribution of Cl-/HCO3- exchange to intracellular pH (pHi) regulation in cultured chick heart cells was evaluated using ion-selective microelectrodes to monitor pHi, Na+ (aiNa), and Cl- (aiCl) activity. In (HCO3- + CO2)-buffered solution steady-state pHi was 7.12. Removing (HCO3- + CO2) buffer caused a SITS (0.1 mM)-sensitive alkalinization and countergradient increase in aiCl along with a transient DIDS-sensitive countergradient decrease in aiNa. SITS had no effect on the rate of pHi recovery from alkalinization. When (HCO3- + CO2) was reintroduced the cells rapidly acidified, aiNa increased, aiCl decreased, and pHi recovered. The decrease in aiCl and the pHi recovery were SITS sensitive. Cells exposed to 10 mM NH4Cl became transiently alkaline concomitant with an increase in aiCl and a decrease in aiNa. The intracellular acidification induced by NH4Cl removal was accompanied by a decrease in aiCl and an increase in aiNa that led to the recovery of pHi. In the presence of (HCO3- + CO2), addition of either amiloride (1 mM) or DIDS (1 mM) partially reduced pHi recovery, whereas application of amiloride plus DIDS completely inhibited the pHi recovery and the decrease in aiCl. Therefore, after an acid load pHi recovery is HCO3o- and Nao- dependent and DIDS sensitive (but not Ca2+o dependent). Furthermore, SITS inhibition of Na(+)-dependent Cl-/HCO3- exchange caused an increase in aiCl and a decrease in the 36Cl efflux rate constant and pHi. In (HCO3- + CO2)-free solution, amiloride completely blocked the pHi recovery from acidification that was induced by removal of NH4Cl. Thus, both Na+/H+ and Na(+)-dependent Cl-/HCO3- exchange are involved in pHi regulation from acidification. When the cells became alkaline upon removal of (HCO3- + CO2), a SITS-sensitive increase in pHi and aiCl was accompanied by a decrease of aiNa, suggesting that the HCO3- efflux, which can attenuate initial alkalinization, is via a Na(+)-dependent Cl-/HCO3- exchange. However, the mechanism involved in pHi regulation from alkalinization is yet to be established. In conclusion, in cultured chick heart cells the Na(+)-dependent Cl-/HCO3- exchange regulates pHi response to acidification and is involved in the steady-state maintenance of pHi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号